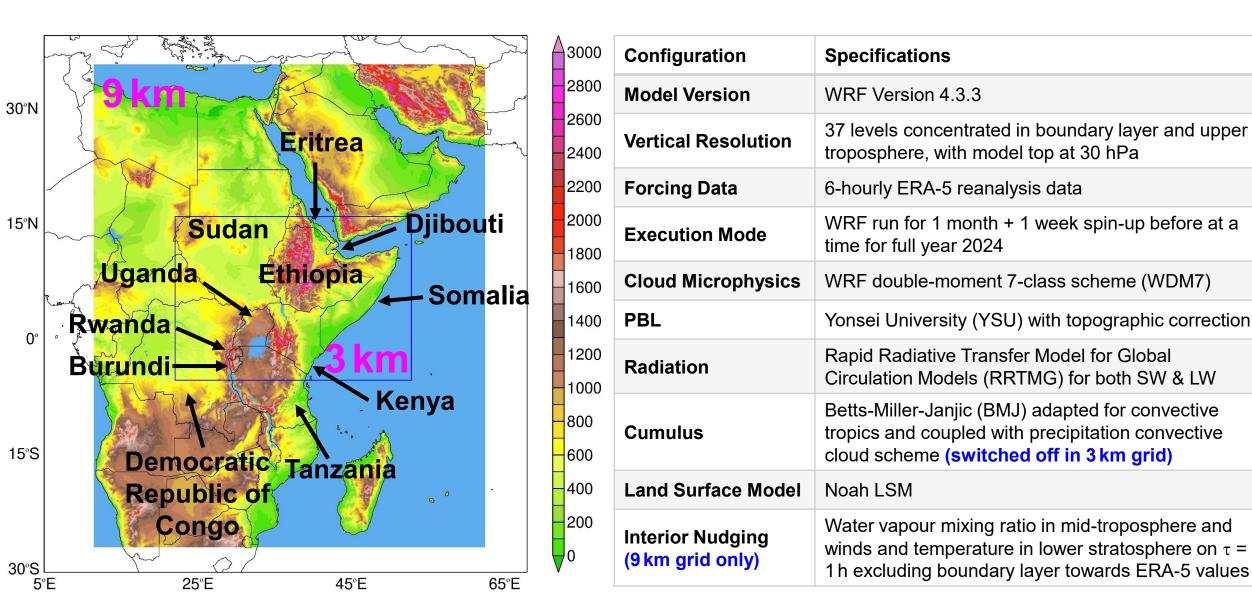
High-resolution WRF Simulations over East Africa: Model Setup & Evaluation

Dr Diana Francis

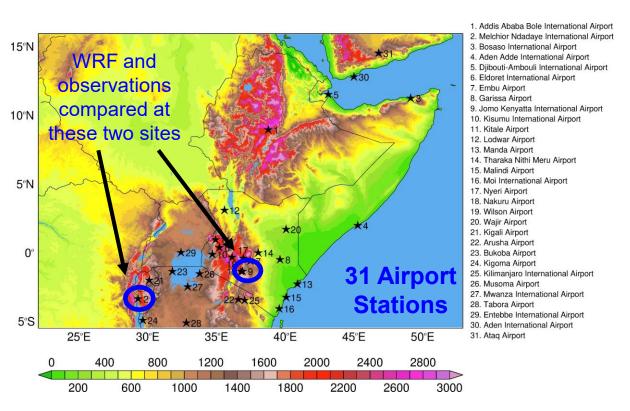

Weather Research & Forecasting (WRF) Model

- ➤ "Community Model": free and shared resource developed in late 1990s by National Center of Atmospheric Research (NCAR) and National Oceanic Atmospheric Administration (NOAA) with other institutions
- > WRF Version 1.0 released in December 2000; current release is Version 4.7.1 in June 2025
- > WRF is suitable for use in a wide range of applications including:
 - Idealized (e.g. convection, surface fire, sea breeze) & real-case simulations;
 - Polar climate research (PolarWRF);
 - Coupled-model (e.g. ocean-atmosphere) applications;
 - Chemistry-related applications (WRF-CHEM);
 - Hydrometeorological and Hydrological applications (WRF-HYDRO);
 - Solar energy applications (WRF-SOLAR);
 - Planetary atmospheres research (PlanetWRF).
- ➤ WRF used by academic atmospheric scientists, forecast teams at operational centers, application scientists. Important to calibrate model for target region: different physics options optimized for different environments.

Download WRF: https://github.com/wrf-model/WRF/releases

WRF Users' Guide: https://www2.mmm.ucar.edu/wrf/users/docs/user-guide-v4/contents.html

WRF-Africa Experimental Setup



WRF-Africa: Fields Stored & File Sizes

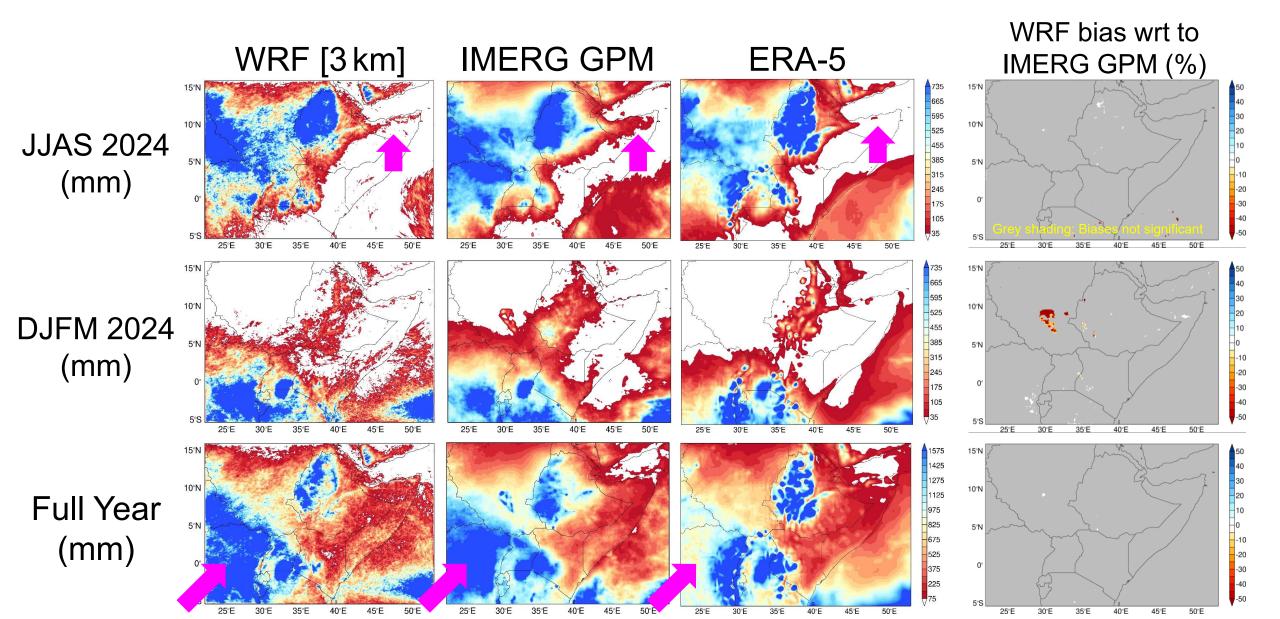
- ➤ Fonseca et al. (2015, GMD) and Koh and Fonseca (2016, QJRMS) optimized WRF model for convective tropics by calibrating tunable parameters in cumulus scheme and adding a precipitating convective cloud scheme to account for subgrid-scale cloud-radiation feedbacks. This version is used for downscaling of ERA-5 data over East Africa;
- ➤ WRF simulations performed on Stampede3 cluster: 1 month + 1 week spin-up take around 3.5 days with 1440 CPUs. Raw model output stored hourly, taking ~560 MB for 9 km grid and ~980 MB for 3 km grid → ~1.1 TB per month;
- ➤ Raw output is post-processed to extract relevant surface fields and 3D on selected pressure levels. Post-processed hourly files have a size of ~262 MB for 9 km grid and ~457 MB for 3 km grid → ~522 GB per month;
- ➤ Total output (raw + post-processed) takes ~1.6 TB per month or ~20 TB per year. Currently running model for previous years → multi-year WRF product ideally suited for training of ML models in data sparse region.

Variable Type	List of Variables
2D fields	Precipitable water, cloud top temperature, IVT, SLP, air temperature and dewpoint temperature, PBL depth, soil temperature & moisture, precipitation, surface radiation & heat fluxes, SSTs, etc.
3D fields on 14 pressure levels (1000, 975, 950, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100 hPa)	Geopotential, Temperature, Water Vapour Mixing Ratio, 3D Wind components, Potential Vorticity, Absolute Vorticity
3D fields on 37 model levels	Winds, temperature, cloud & moisture fields, radar reflectivity, etc.

Model Evaluation Datasets & Metrics

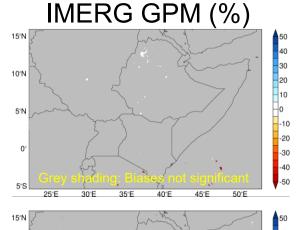
Evaluation Dataset	Specifications
Weather Station Data	Hourly observations at 31 airport stations; daily statistics at 70 stations available at NOAA Global Surface Summary of the Day (NOAA GSOD) dataset
IMERG GPM Precipitation	Satellite-derived precipitation estimates (0.1° × 0.1°; 30-min) from 1998 to present from Integrated Multi-Satellite Retrievals (IMERG) for the Global Precipitation Mission (GPM)
ERA-5 Reanalysis	Hourly products at 0.25° × 0.25° from January 1940 to present

Verification Diagnostics (Koh et al., 2012, JGR)

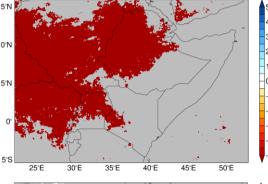

D = F - O

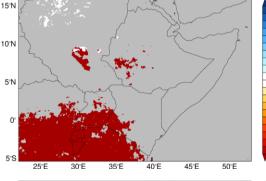
Model bias: mean discrepancy (\overline{D}) between forecasts (F) and observations (O)

$$\mu = \frac{\langle D \rangle}{\sigma_D}$$


Normalized bias (μ): ratio of bias to standard deviation of discrepancy between F and O If $|\mu| < 0.5$, contribution of bias to RMSE is small and biases considered not significant

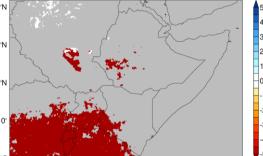
Evaluation of Model's Precipitation


Comparison of WRF 3 km Precipitation with IFS 4.4 km


JJAS 2024

WRF bias wrt to

IFS bias wrt to IMERG GPM (%)



DJFM 2024

Full Year

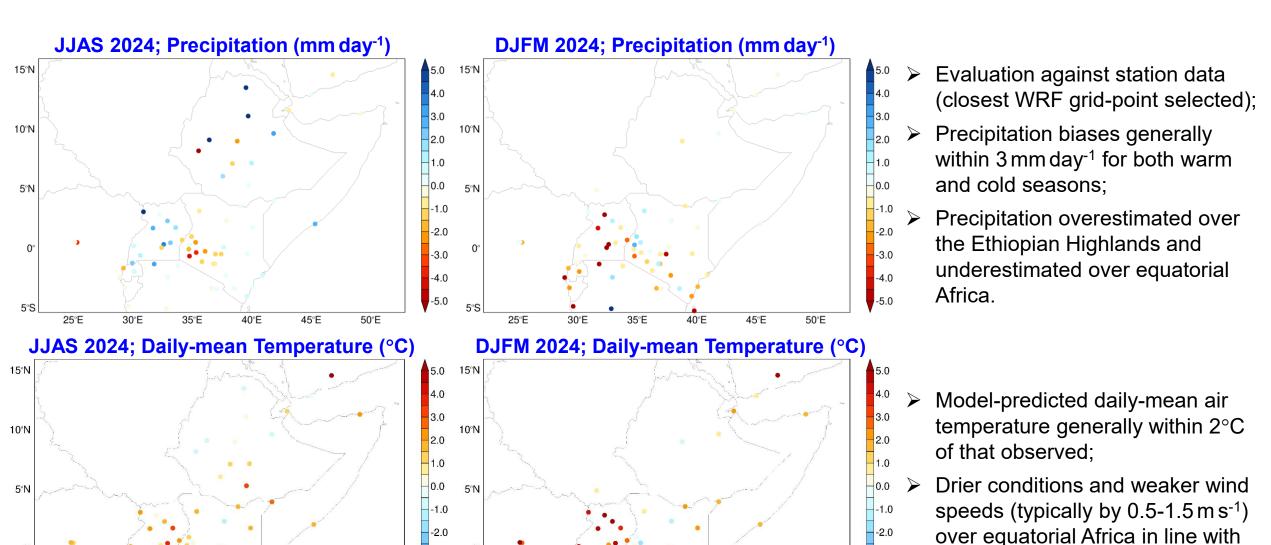
4.4 km atmosphere (137 vertical levels) and 5 km ocean (69 vertical levels) model run for 2020-2024 at ECMWF (ERA-5 is generated with older IFS Cycle 41r2);

Integrated Forecast System (IFS) Cycle 48r1

- Daily accumulated IFS 4.4 km data extracted and skill scores with respect to IMERG GPM computed as done for WRF 3 km;
- ➤ WRF 3 km has superior performance to IFS 4.4 km over East Africa for individual months, seasons, and full year for rainfall → IFS 4.4 km has tendency to overestimate observed precipitation in the region;
- Calibrated numerical model run uncoupled can give more skillful predictions compared to state-of-the-art model run by ECMWF → added value of model optimization.

-3.0

-4.0


45°E

40°E

50°E

warmer temperatures.

Evaluation Against Daily Station Data (WRF biases)

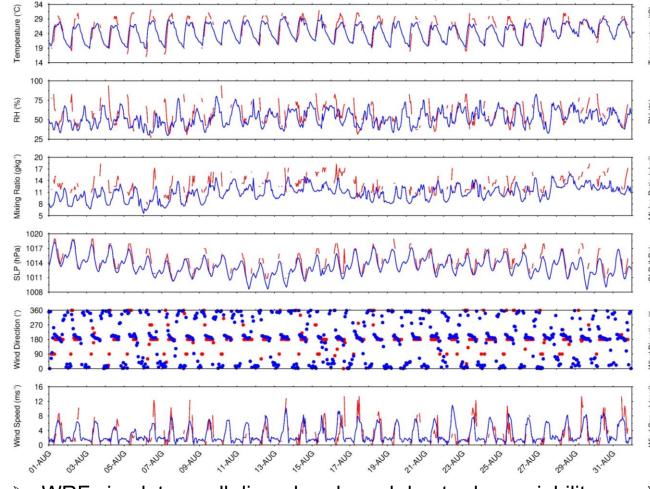
-3.0

-5.0

25°E

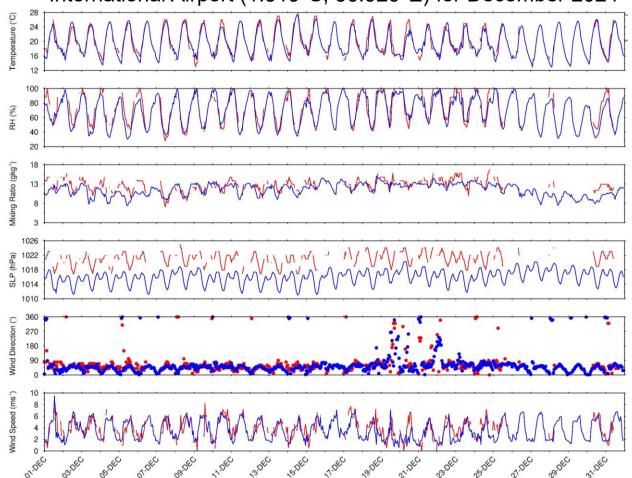
25°E

40°E


35°E

45°E

50°E


Evaluation Against Hourly Airport Data

WRF (blue) & METAR (red) hourly data at Bujumbura International Airport (3.324°S, 29.319°E) for August 2024

- WRF simulates well diurnal cycle and day-to-day variability;
- > Semi-diurnal tide signal in surface pressure captured by WRF.

WRF (blue) & METAR (red) hourly data at Jomo Kenyatta International Airport (1.319°S, 36.926°E) for December 2024

- Shift in SLP due to incorrect representation of topography;
- Cooler air advection from 19-21 December captured by WRF.

10

Conclusions & Ongoing Work

- ➤ WRF model set up in 9 km 3 km configuration over East Africa and run for full year of 2024;
- Evaluation against satellite-derived precipitation estimates showed good agreement, with WRF 3 km product outperforming ERA-5 27 km dataset mostly over high terrain and in deep tropics;
- WRF predictions in close agreement with hourly observations at 31 airport stations in the region, with model capturing diurnal cycle and effects of mid-latitude cold/dry air intrusions;
- ➤ Precipitation biases generally within 3 mm day⁻¹ when compared to in-situ measurements, tendency for overestimation over high-terrain. For other fields WRF data also in close agreement with observations: e.g. modelled and observed air temperature generally within 2°C, 10-m wind speed within 1.5 m s⁻¹, and 2-m mixing ratio within 1.5 g kg⁻¹;
- ➤ Currently running model for previous years → WRF product ideally suited for training of ML models in data sparse region.

Relevant Publications

Fonseca, R., Koh, T.-Y., & Teo, C.-K. (2019) Multi-scale interactions in a high-resolution tropical-belt experiment and observations. *Climate Dynamics*. https://doi.org/10.1007/s00382-018-4332-y

Fonseca, R., Zhang, Y., & Yong, K.-T. (2015) Improved simulation of precipitation in the tropics using a modified BMJ scheme in the WRF model. *Geoscientific Model Development*, 8, 2915-2928. https://doi.org/10.5194/gmd-8-2915-2015

Koh, T.-Y., S. Wang, & B. C. Bhatt (2012) A diagnostic suite to assess NWP performance. *Journal of Geophysical Research*, 117, D13109. https://doi.org/10.1029/2011JD017103

Koh, T.-Y., & Fonseca, R. (2016) Subgrid-scale cloud-radiation feedback for the Betts-Miller-Janjic convection scheme. *Quarterly Journal of the Royal Meteorological Society*, 142, 989-1006. https://doi.org/10.1002/qj.2702