

Theory of Change: Farmer-focussed impact-based forecast service

Effective communication (translate-transfer) channels

Key Considerations

- Cost per farmer at scale
- Access
- Familiarity/Literacy
- Interactivity (one-way or two-way)
- Level of customization
- Long-term sustainability (capacity of doer at scale)
- Complexity of information

Potential Tools

Successful Build-Operate-Transfer with Ama Krushi (now Krushi Samruddhi)

BUILD

OPERATE

TRANSFER

2018. Conceptualized with & funded by the Gates Foundation

Service co-designed with the Gov of Odisha (GoO); GoO pays implementation costs

2018-2022. Program reaches 2.7M farmers at time of transfer to GoO

20+ value chains Two-way voice, Radio, SMS, Extension workers ~2025. Program continues to scale, now reaching 7M+ farmers, entirely owned and funded by GoO

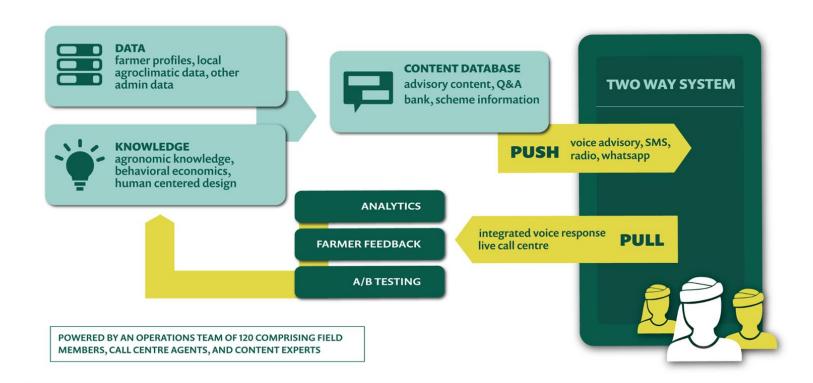
Building AI tools on this foundational system

Ama Krushi is your

Increased Productivity, Incomes, and Climate Resilience

Reduced likelihood of severe crop loss

Increased productivity & production


\$1 invested in the service yields \$12-19 in additional income for farmers

This can increase over time and with scale

Summary insights from the impact evaluation of our flagship initiative Ama Krushi

Example: PxD - GoO advisory service in Odisha

How transfer channels influence effectiveness

Two-way systems can help with early warnings:

Rise in questions on Brown Plant Hopper (BPH) for paddy farmers, Krushi Samruddhi pushed preventive alerts at district-level in mid-August, official declaration from government in early September

Scaling can maximize benefits, hard to know ex-ante which information is most useful

- Managing weather shocks: 9.4% increase in harvest in areas hit by excess rainfall, and 21% reduction in crop loss in areas of inadequate rain.
- Gains among below-median productivity farmers are significantly higher.

Multimodal, flexible channels can be critical to effective reach:

Extreme weather alerts developed for voice dissemination also repurposed through SMS groups, radio, and extension workers to amplify content

Simple, flexible, repeatable architecture ensures long-term sustainability AND continued innovation:

Foundational system scaled from 2.3 million (in 2023) to 7 million +; Al chatbots trained on the same content.

Insights on effective transfer

01	Meet the farmer where they are	02	Design scalable, flexible systems: analytics, feedback loops, interoperable, multimodal
03	Trade-offs between scale and complexity	04	Institutionalize within existing systems, identify pathways to long-term sustainability

Day 3 Slides: Session 2

AB Testing w/ Amir

Objectives

Introduce the use of experimentation, or A/B testing, in designing and improving weather forecast services.

01	Why design testing and what is A/B testing?	02	Examples of A/B testing in large-scale services	03	Step-by-step process and considerations
	i cesting.	I	SCI VICCS	I	considerations

Why design testing?

Agricultural or climate information can be difficult to communicate precisely

O2 | Small design tweaks matter

Farmer reactions are context-specific

Less information, but farmers can

understand

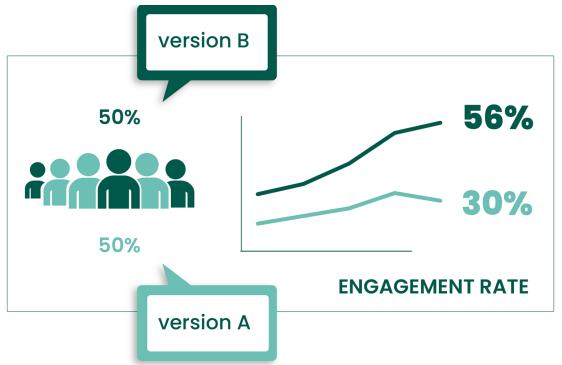
The 2024 monsoon rainfall (Jun-Sept) in India is expected to be above normal (106% of average \pm 5% error).

Too technical

Latest forecast: The monsoon seasonal rainfall in India this Kharif season is expected to be 6% above normal.

A/B Testing: A Smart, Simple Way to Improve Services

What it is


Send two versions (A and B) of a message or service to randomly selected users.

How it works

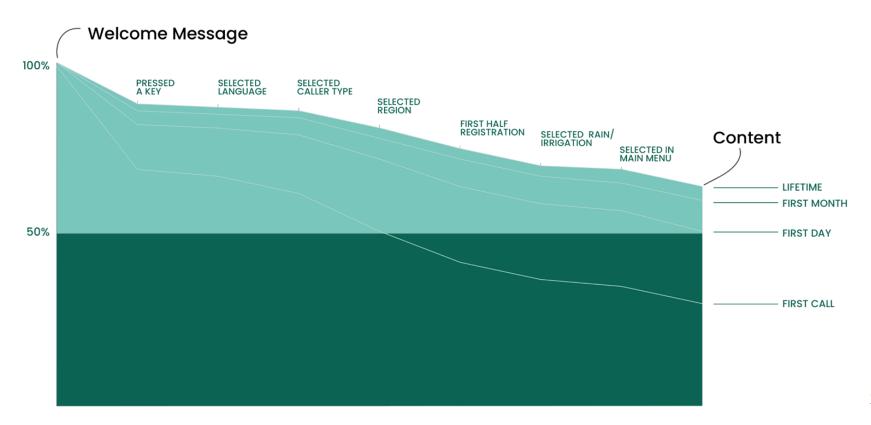
Track which version leads to better outcomes (e.g. message recall, comprehension).

Why it's useful

- Data-driven insights
- Generates clear evidence between design choice and outcomes
- High returns, low cost

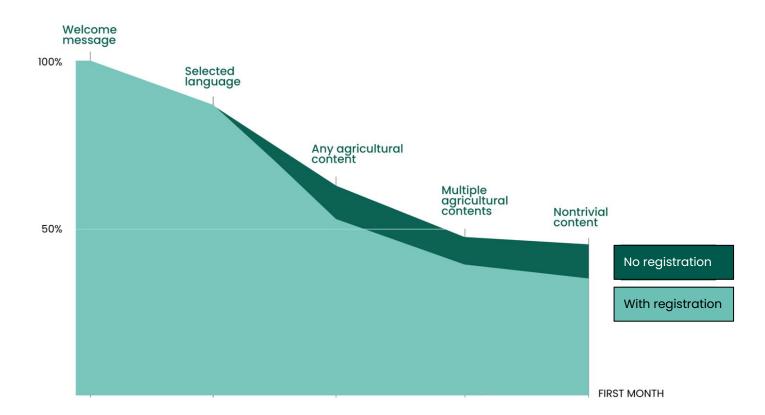
Examples from PxD Case Study 1: 8028 in Ethiopia

Agricultural Transformation Institute


- A public institute within the MoA
- Established to promote agricultural sector transformation in Ethiopia

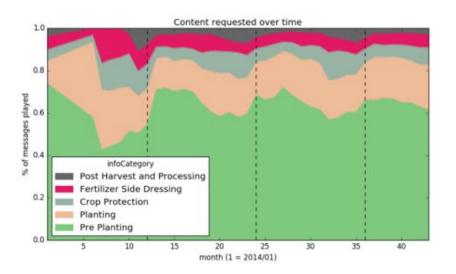
8028 farmers' hotline

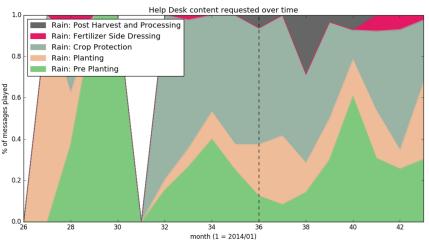
- Launched in 2014
- 21 crops, 4 livestocks, financial literacy
- 67M calls & 6.96M callers
- 1.04M calls from 241K users in 2024



User data analysis (1): < 50% of first-time callers reach agricultural content

A/B testing (1): Postponing registration increases users' content access from 52% to 63%

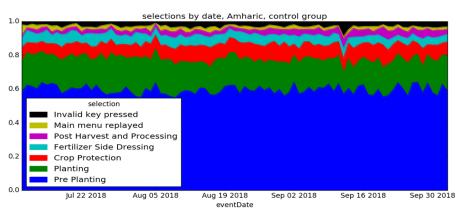


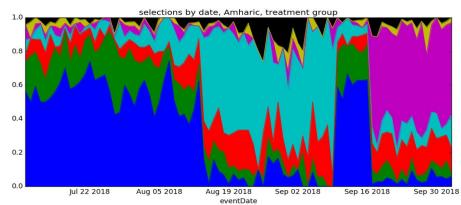


User data analysis (2): Majority access preplanting advice throughout the season

Users mostly choose preplanting (press 1) regardless of the season

Help desk content illustrates what seasonal variation should look like





A/B testing (2): Rotating menus increase access to seasonally relevant content

No rotation

Seasonal menu rotation

Examples from PxD Case Study 2: Weather Services for Coffee Farmers

Context

- Digital advisory service by the Coffee Board of India - Coffee Krishi Taranga (CKT)
- Nearly 50K coffee farmers in Karnataka
- Weekly forecasts for 5-day cumulative rainfall

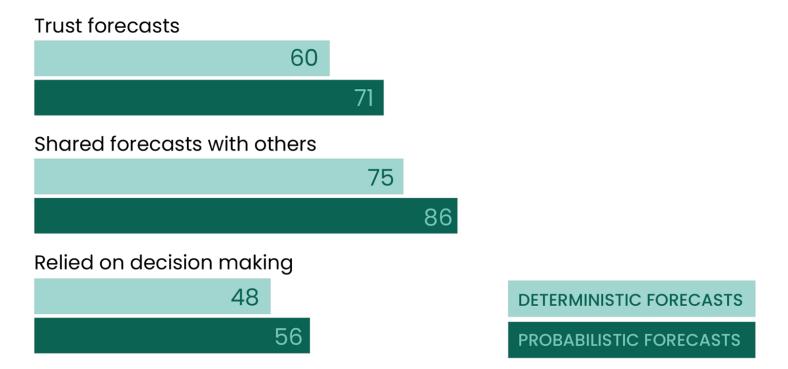
Design choice

- Deterministic forecasts: easier to communicate but doesn't indicate uncertainty levels
- Probabilistic forecasts: more complex, but useful information on uncertainty levels

A/B testing

Welcome to the CKT weather forecast service! For the next 5 days, in your village...

There is a 60% chance of 1 inch or more of rain. On average, rainfall of 1.2 inches is expected...


Average rainfall of 1.2 inches is expected...

Version A

Version B

India: Testing weather forecast messages (preliminary results)

How do we incorporate A/B testing?

Understand user patterns and feedback

What parts of the current service work well?
Where do farmers have challenges?

Identify what to test and measure

Choose design elements (e.g., message format) and outcomes (e.g., comprehension)

Deliver the test

Identify the testing sample and randomize, and send out different message versions

Collect and analyze data

Compare outcomes across groups
Assess the reliability of the results

Assess technical feasibility

Technological infrastructure: Does the platform support your dissemination plan?

Backend data systems: Can the backend generate your engagement metrics?

Data collection mechanisms: Can the improvement be scaled across system?

Use insights for design decisions

Key messages

03

Design choices matter — Small tweaks can have big impacts

Even minor changes in wording, timing, or delivery can shift engagement and behavior significantly.

A/B testing can be low-cost, high-return

Large samples and use of administrative data allow cost-effective learning

Our priors can be wrong — Test, don't guess

02

04

What "should" work doesn't always; Experiment helps identify what actually works

Platform, backend and monitoring systems need a lot of attention!

Sustainability of data-driven learning depends on the capabilities of backend and monitoring systems

