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Why human-centered operational benchmarks?

There are often two types of failures in making models useful

Failures of coordination

Eesa

Failures of imagination
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Operational benchmarking / verification: Helping NMHSs
decide which novel forecasting models and outputs (if any) to
operationalize.

Publicly Available Global Regional Models Operational Human-Centered
Observations Forecasts and Al- & Downscaling Benchmarking Forecasts
Benchmarks with Local Data with Local Data

Global Scale Reglonal & National Scale Local Scale

Agrometeorologlcal Forecasts

Application Requirements .
for Local Scale Decision-Support

Interdisciplinary insights
are foundational to an
effective benchmarking
setup
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In a holistic benchmarking ecosystem, several ingredients needed
to improve forecast usefulness for agricultural decision-support

Set task for forecast requirements Check data quality given task Identify metrics to select models
Identify baselines to evaluate models

Application Requirements Global and Local Data Global Forecasts Regional Forecasts
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Agrometeorological Forecasts
for Local Scale Decision-Support
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Task-setting example: planting timing

Task setting components
- needs the forecast?

- individuals in rainfed vs. irrigated zones

- extension agent with more training

- a government strategizing resources
- information do they require?

- wet season onset

- extreme weather alerts
- is the forecast needed?

- geography considerations
- is the forecast needed?

- lead times for planning

- time of year
- do they need the forecast?

- communication channels (e.g. radio, WhatsApp)

- agroclimate advisory bulletins

Set task for forecast requirements

Application Requirements
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Task requirements
can affect how a
forecast is generated,
verified and improved



Examples from recent AIFS ENS discussion Set task for forecast requirements
at ECMWF - Known issues Application Requirements
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AIFS, Forecast 240h
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Unphysical pressure and temperature values Very small values (e.g. < 0.1mm/6h) of precipitation can occur in arid regions.

can develop in mountainous regions Particularly noticeable when looking at long accumulation periods

Source: Recent ECMWF developer talk on AIFS ENS - talks can be
a great way to keep up with the latest advances and opportunities for
improvements - see https://ai4farmcast.ai/materials.html where we
have started to archive these kinds of talks for reference

Feedback can inform model development - if you spot an issue, can report it at ~ / WEATHER PACKAGE
https://confluence.ecmwf.int/display/FCST/Known+AIFS+ENS+Forecasting+tlssues  amrorscae 6


https://ai4farmcast.ai/materials.html

. ) . ] Check data quality given task
Data quality is not one size fits all T P e

Data quality considerations
- Quality varies based on time
- Ideal scenario of perfect data is unrealistic - how to
fill this gap requires a multi-tool approach
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Identify metrics to select models

MUIt'pIe teStS Of Sk|” can reveal d|ﬂ:erent ldentif_y baselines to evaluate models
aSpectS Of model performance Global Forecasts Regional Forecasts

Models may be wrong for different reasons - how
they are wrong matters for potential to bias correct
their results

Some example cases with some misses in dry spell
detection with FuXiS2S ad FuXi

FuXi - 16 day lead
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Credit: Mayank Gupta



Benchmarking 5- to 30-day Forecasts of Indian Monsoon Onset

Comparing AI, NWP, and
Climatology
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Small test sample size is a major
challenge for subseasonal-to-
seasonal (S2S) benchmarking

Models vary in data they need for
operation, cost, forecasted
variables, etc. (e.g., soil moisture
in only one model)



Metrics and baselines matter

e Baselines matter for effective comparison (few
use a bias corrected version of IFS to compare)
e Different metrics can reveal different things
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Example - when our team tested ERAS and IMERG daily rainfall estimates in June vs
IMD rain gauge data using ACC - ERAS5 had higher scores over core monsoon zone

Identify metrics to select models
Identify baselines to evaluate models
Global Forecasts Regional Forecasts

But when we
examined the
biases, IMERG
had smaller
biases compared
to IMD gridded
0.25’ rainfall data
on average
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Graphcast demonstrates skill

relative to ECMWF HRES

ECMWEF ENS

Temperature

Gencast shows skill relative to
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Lam et al. 2023 (Science): 300M parameters (graph neural

nets)

Training goals - understanding common Al model scorecard
approaches to set ourselves up to close more gaps between

b Google DeepMind

scientific and operational benchmarking

Price et al. 2024 (Nature): (conditional diffusion model)



Benchmarking Questions

What metrics do you use to evaluate models today?

What is your process for assessing a rainfall output? A
temperature forecast? wet season onset spell?
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