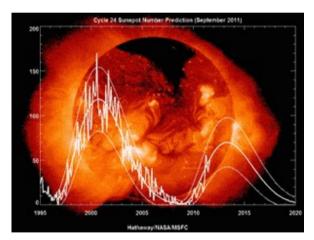
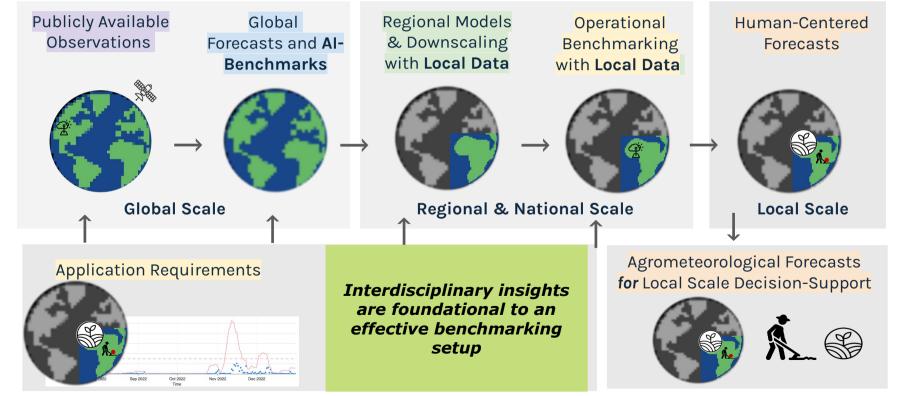

# Benchmarking: Motivations and Ecosystem


Katie Kowal

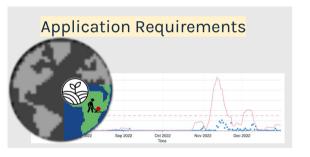
Why human-centered operational benchmarks?

There are often two types of failures in making models useful


#### **Failures of coordination**






**Failures of imagination** 

**Operational benchmarking / verification:** Helping NMHSs decide which novel forecasting models and outputs (if any) to operationalize.



## In a holistic benchmarking ecosystem, several ingredients needed to improve forecast usefulness for agricultural decision-support

Set task for forecast requirements

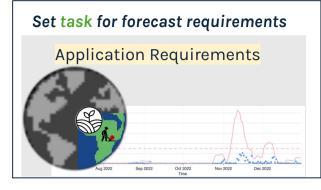


Check data quality given task



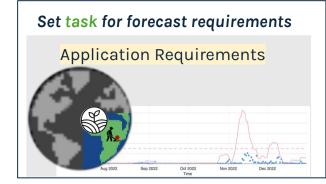
Identify metrics to select models
Identify baselines to evaluate models

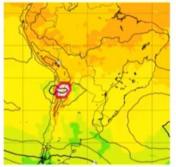




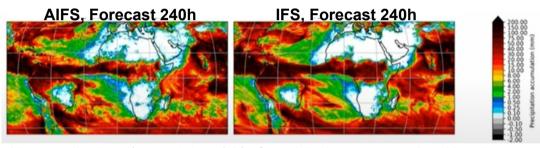



### Task-setting example: planting timing


#### Task setting components


- who needs the forecast?
  - individuals in rainfed vs. irrigated zones
  - extension agent with more training
  - a government strategizing resources
- what information do they require?
  - wet season onset
  - extreme weather alerts
- where is the forecast needed?
  - geography considerations
- when is the forecast needed?
  - lead times for planning
  - time of year
- how do they need the forecast?
  - communication channels (e.g. radio, WhatsApp)
  - agroclimate advisory bulletins




Task requirements can affect how a forecast is generated, verified and improved

# Examples from recent AIFS ENS discussion at ECMWF - Known issues





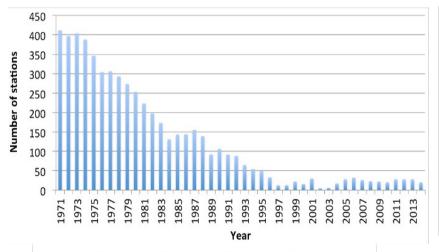
Unphysical pressure and temperature values can develop in mountainous regions



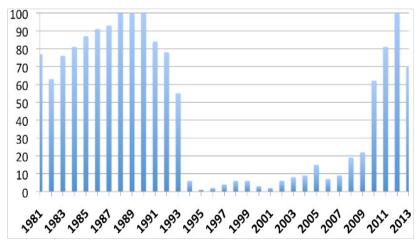
Very small values (e.g. < 0.1mm/6h) of precipitation can occur in arid regions. Particularly noticeable when looking at long accumulation periods

**Source:** Recent ECMWF developer talk on AIFS ENS - talks can be a great way to keep up with the latest advances and opportunities for improvements - see <a href="https://ai4farmcast.ai/materials.html">https://ai4farmcast.ai/materials.html</a> where we have started to archive these kinds of talks for reference

Feedback can inform model development - if you spot an issue, can report it at <a href="https://confluence.ecmwf.int/display/FCST/Known+AIFS+ENS+Forecasting+Issues">https://confluence.ecmwf.int/display/FCST/Known+AIFS+ENS+Forecasting+Issues</a>




### Data quality is not one size fits all

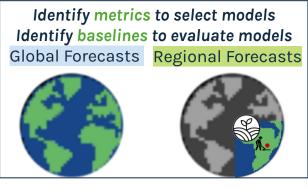

#### Data quality considerations

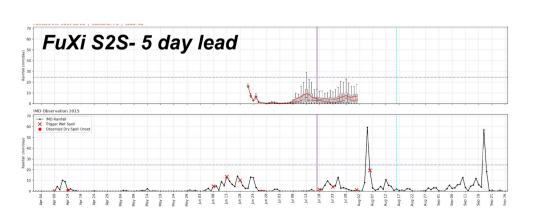
- Ouality varies based on time
- Ideal scenario of perfect data is unrealistic how to fill this gap requires a multi-tool approach

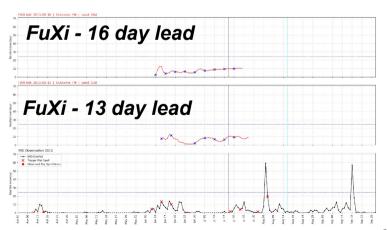










## Conflict/unrest: distraction and disruption


# Multiple tests of skill can reveal different aspects of model performance

Models may be wrong for different reasons - how they are wrong matters for potential to bias correct their results

Some example cases with some misses in dry spell detection with FuXiS2S ad FuXi





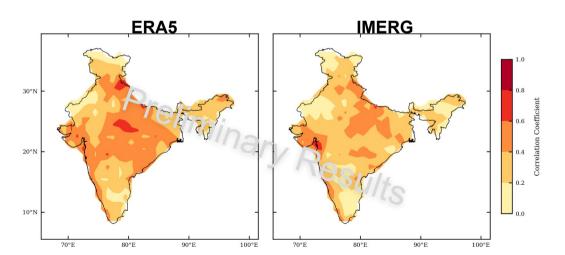


## Benchmarking 5- to 30-day Forecasts of Indian Monsoon Onset

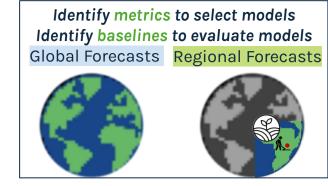
Comparing AI, NWP, and Climatology

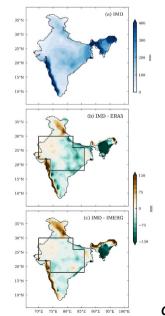
| Baseline & NWP        | Years     |
|-----------------------|-----------|
| Climatology (history) | 1901-2023 |
| IFS/IFS S2S (NWP)     | 2004-2024 |

ELIVI COC\*


| Al models             | Training  | Fine-tuning             | Testing             | - Small test sample size is a ma                                                                                                                                               |
|-----------------------|-----------|-------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AIFS                  | 1979-2020 | 2019-2020<br>(IFS HRES) | 2021–2023, pre 1979 | <ul> <li>seasonal (S2S) benchmarking</li> <li>Models vary in data they need for operation, cost, forecasted variables, etc. (e.g., soil moisture in only one model)</li> </ul> |
| GenCast*              | 1979-2018 | None                    | 2019-2023           |                                                                                                                                                                                |
| GraphCast             | 1979-2017 | 2016-2021<br>(IFS HRES) | 2022-2023, pre 1979 |                                                                                                                                                                                |
| NeuralGCM<br>(IMERG)* | 2001-2018 | None                    | 2019-2023, pre 1979 |                                                                                                                                                                                |
| FuXi                  | 1979-2015 | 2016-2017               | 2018-2023, pre 1979 |                                                                                                                                                                                |

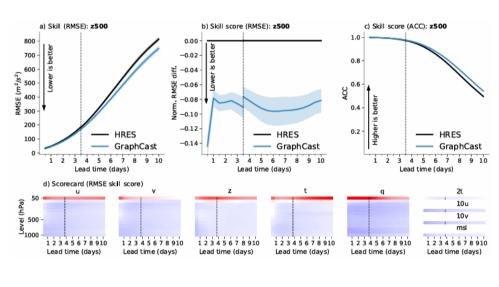
2017 2021


10E0 2016 None

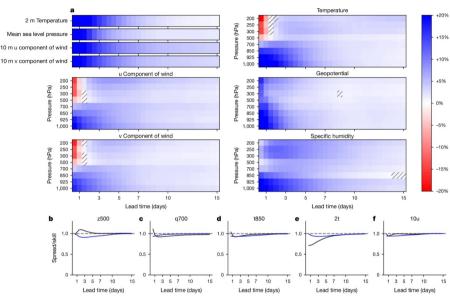

#### Metrics and baselines matter

- Baselines matter for effective comparison (few use a bias corrected version of IFS to compare)
- **Different metrics** can reveal different things




Example - when our team tested ERA5 and IMERG daily rainfall estimates in June vs IMD rain gauge data using ACC - ERA5 had higher scores over core monsoon zone






But when we examined the biases, IMERG had smaller biases compared to IMD gridded 0.25' rainfall data on average

# Graphcast demonstrates skill relative to ECMWF HRES



# Gencast shows skill relative to ECMWF ENS



Gencast Price et al. 2024 (Nature): (conditional diffusion model)

#### Graphcast

Lam et al. 2023 (Science): 300M parameters (graph neural nets)



**Training goals -** understanding common AI model scorecard approaches to set ourselves up to close more gaps between scientific and operational benchmarking

## Benchmarking Questions

What metrics do you use to evaluate models today?

What is your process for assessing a rainfall output? A temperature forecast? wet season onset spell?

