
Training Program Forecast Targets: 1-4 Weeks Ahead

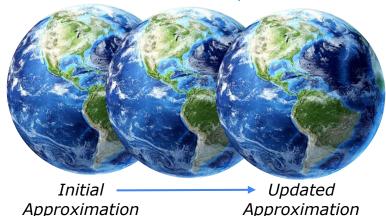
Planned Forecast Range for Training Program:

- 'Medium-Range' forecasts (e.g. 10 days ahead): timeframe where AI-based methods have performed well
- **'Subseasonal' forecasts** (14 to 40+ days ahead): key decision-making window for agriculture and a known predictability challenge for all models. AI-based methods are improving over this window

Current model plan: cover global models needed for forecasts at medium-range and subseasonal timescales, including deterministic and probabilistic outputs (deterministic less useful after 2 weeks ahead)

Traditional Forecast Pipeline: Numerical Weather Prediction (NWP)

Approximate Current State of Earth System


Inputs vary, e.g. satellites, radar, ground sensors

Assimilate New Observations into Model

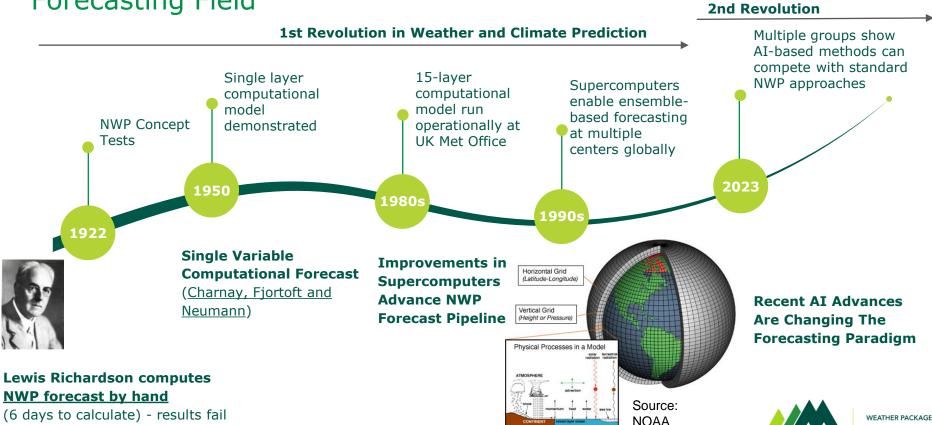
Additional observations can keep model more realistic

Post-process raw model outputs to correct biases

Machine learning statistics often already used to correct raw outputs

Generate Forecast

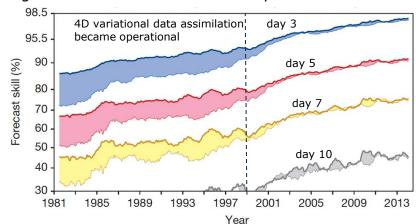
Correct Biases


Use Physical Equations to Model How Earth System Will Evolve

Standard governing equations to approximate motion and energy

Recent AI Model Developments Are Changing the Weather Forecasting Field

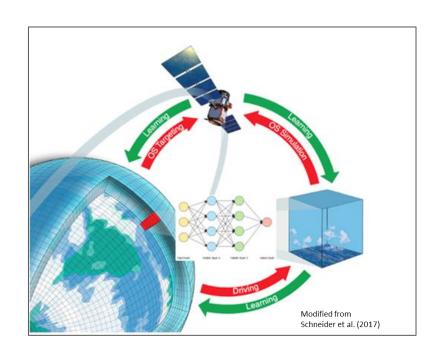
2nd Revolution



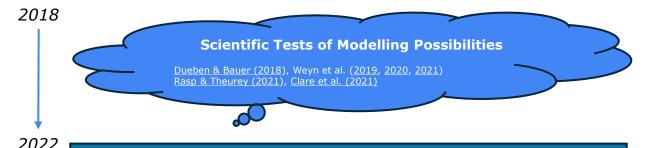
in part due to initial condition

limitations

Why have we shifted from incremental progress with computational power in NWP towards a new 'revolution' in forecasting with AI weather forecasts?


Progress in the forecast skill of European weather model


The quiet revolution of numerical weather prediction


Peter Bauer¹, Alan Thorpe¹ & Gilbert Brunet²

Nature (2015)

Recent AI Model Development Highlights

First Competitive Medium-Range Forecasts

NVDIA FourCastNet efficiencies vs. ECMWF IFS (Jan 2022)

Keisler GraphNN comparable to NOAA GFS (Jan 2022)

<u>Huawei Pangu-Weather</u> shows more accurate Tropical Cyclone tracks vs. IFS (Nov 2022)

Google Deepmind introduces GraphCast, comparable to IFS (Dec 2022)

Notes

- Model developments are advancing rapidly
- AI-based modelling methods vary (e.g. NeuralGCM, AIFS, GenCast) and perform differently at different timescales
- Operational centers are especially keen for feedback on where their models are working or not

2023

Operational Implementation

ECMWF introduces AIFS (2023) and releases experimental ensemble version (2024), running operationally alongside IFS as of 25 February 2025

WEATHER PACKAGE

Data-driven prediction enables huge efficiency gains

FOURCASTNET: A GLOBAL DATA-DRIVEN HIGH-RESOLUTION WEATHER MODEL USING ADAPTIVE FOURIER NEURAL **OPERATORS**

A PREPRINT

Jaideep Pathak NVIDIA Corporation Santa Clara, CA 95051 Shashank Subramanian Lawrence Berkeley National Laboratory Berkeley, CA 94720

Peter Harrington Lawrence Berkeley National Laboratory Berkeley, CA 94720

Sanjeev Raja University of Michigan Ann Arbor, MI 48109

Ashesh Chattopadhyay Rice University

Houston, TX 77005

David Hall **NVIDIA Corporation** Santa Clara, CA 95051

Pedram Hassanzadeh Rice University Houston, TX 77005

California Institute of Technology Pasadena, CA 91125 **NVIDIA Corporation** Santa Clara, CA 95051

Zongyi Li

Morteza Mardani

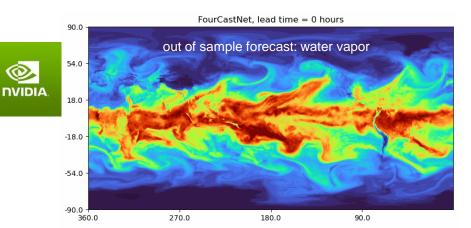
NVIDIA Corporation

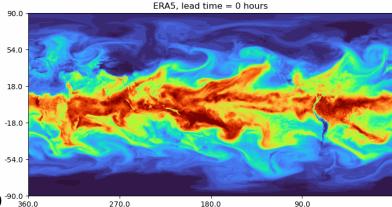
Santa Clara, CA 95051

Karthik Kashinath **NVIDIA Corporation** Santa Clara, CA 95051 Thorsten Kurth

NVIDIA Corporation Santa Clara, CA 95051

Kamyar Azizzadenesheli Purdue University West Lafavette, IN 47907

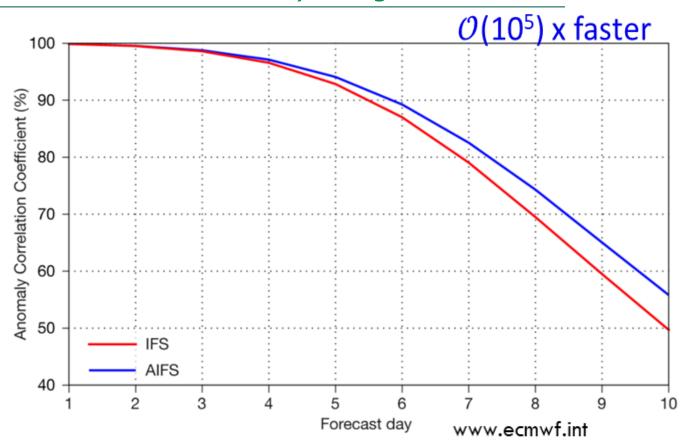

Animashree Anandkumar California Institute of Technology


Pasadena, CA 91125 **NVIDIA Corporation** Santa Clara, CA 95051

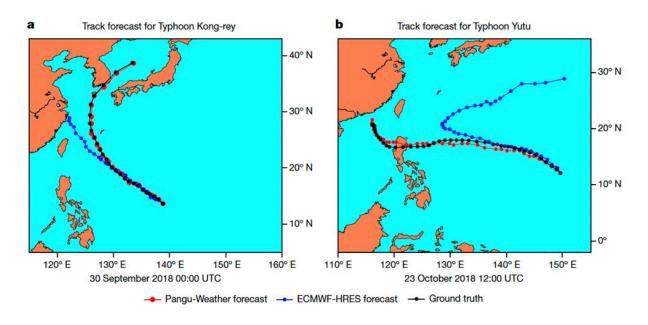
Trained only on

33 variables of 1979-2017 25km observation-derived data (ERA5)

O(10⁵) x faster than the best numerical weather model (ECMWF's IFS) 90.0 (10⁵) and 10⁵


Anomaly Correlation Coefficient (ACC) a common metric to measure model performance in AI weather forecasting community

What are anomalies? departures from a long-term average (what we often call a climatology)


ACC measures how well the predicted anomalies of a forecast match these anomalies

Generally a good indicator for measuring **deterministic deviations from normal -** e.g. unusual temperature, and **directional change -** e.g. forecast anomalies vs observed anomalies

Efficiency and accuracy advances demonstrated with AIFS (ECMWF deterministic model) using ACC on Z500

Accuracy opportunities also demonstrated for extreme events like tropical cycle track predictions show potential

Pangu Weather AI Forecasts: Bi et al. (2023) Nature - 200M parameters (transformer model) show Pangu captured 2018 Typhoons Kong-rey and Yutu tracks better than ECMWF HRES

Integration of AI into Forecast Pipeline Offers Several Opportunities, Including Efficiency, Accuracy, & Autonomy

Current Value Add from AI

Generate Forecast

Current Value Add from AI

Calibrate probabilities and downscaling

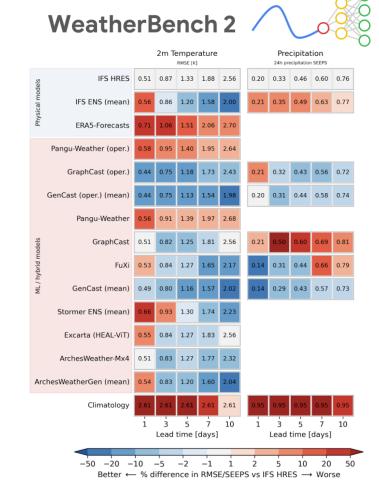
Initial Approximation/ Assimilation Steps (often ERA5 today)

Opportunities include:

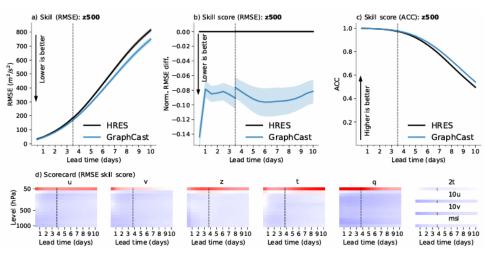
- Efficiency: AI models can speed up the initial forecast runs significantly and prove more cost effective
- · Accuracy: AI models can ingest multiple types of data and train on historical data to improve forecast accuracy
- Autonomy: Once an AI model is trained, it can be run locally on a desktop computer

Common machine learning benchmarking frameworks

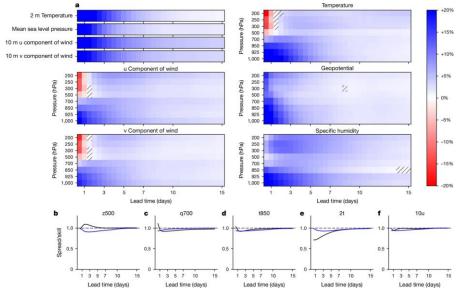
Why benchmarking?


In the past 5 years, AI weather prediction models have **surpassed the skill** of leading numerical weather prediction (NWP) models using some scientific benchmarking standards.

These AI weather prediction models are **wildly** cheaper than NWP models.


AI model: 3 min on 1 A40 GPU - **\$3K USD** (online GPU usage even cheaper)

IFS 9km: 1 hour on 12500 CPUs of Cray XC40 supercomputer - **\$125M USD**


Are these advances **useful** for operational decisions in an agricultural context?

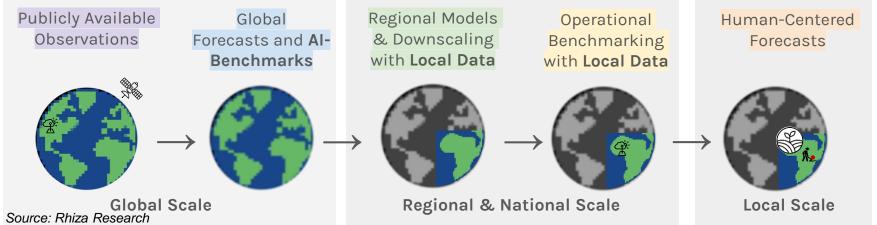
Graphcast demonstrates skill relative to ECMWF HRES

Gencast shows skill relative to ECMWF ENS

Graphcast

Lam et al. 2023 (Science): 300M parameters (graph neural nets)

Price et al. 2024 (Nature): (conditional diffusion model)



Scientific benchmarking for data-driven models often prioritizes - average error and correlation metrics, global estimates, and 'high-impact' prediction tasks like TC tracks

Gencast

Benchmarking has two theories of change

- 1. Al benchmarking: Using benchmarks to drive breakthroughs in Al-based forecasting skill on high-impact prediction tasks.
- **2. Operational benchmarking / verification (our focus):** Helping NMHSs decide which novel forecasting models and outputs (if any) to operationalize.

Key Need for Training Programs - Flexible Tool Agnostic Capacity

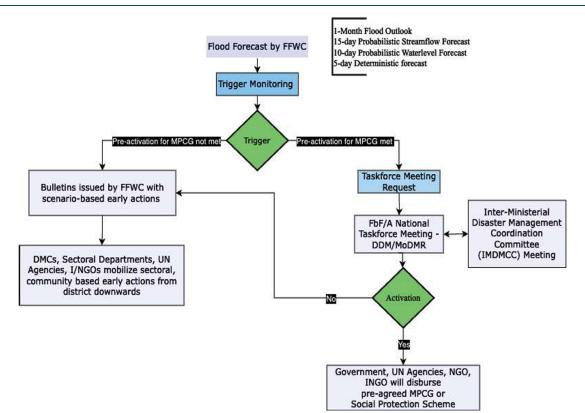
Awareness of the Latest Models and Methods

• The weather forecasting field is changing rapidly and training can help keep up with latest advances

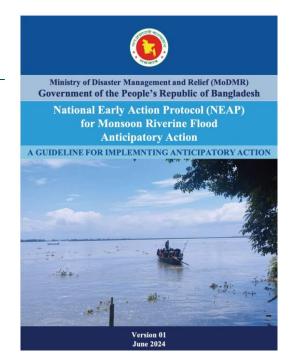
Understand Limits of Conventional NWP and new AI Weather Forecasts

- AI-based models are data-driven if there is limited data to train on, results will be impacted
- AI-based models do not currently provide a replacement for NWP models
- Extreme weather events need careful consideration for model applications

Evaluation is Critical For Effective Use


- Comparisons will have different results depending on the models, metrics, and ground-truth data used
- Changing climate can affect predictability, making frequent model evaluation even more critical

Integration of Weather Forecasts into Operational Decision-Making Remains a Significant Challenge


• Bringing people together across disciplines to further strategize how to operationalize weather information and make it effective for decision-making is a significant need

Building a community of practice

How can we learn from protocols in other countries and disciplines to improve action oriented forecasts for agriculture?

