

Overview: Climate Services for Agriculture

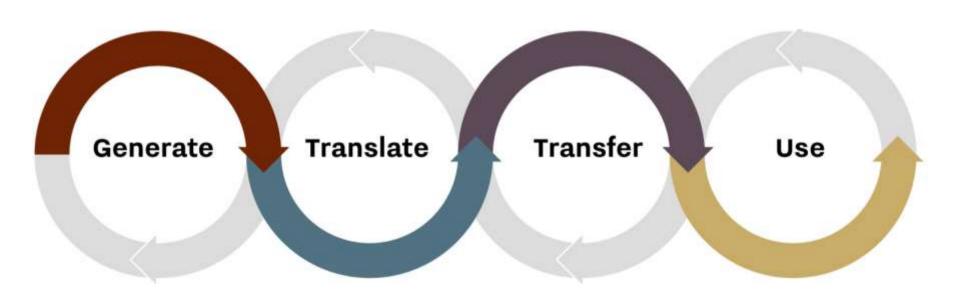
Tufa Dinku Jim Hansen

AIM for Scale AI Weather Training

SEP 22-26, Abu Dhabi

Outline

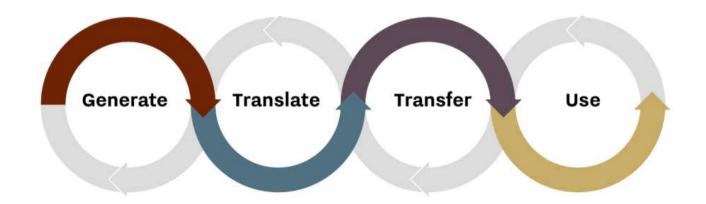
- 1. What are Climate Services
- 2. Why Climate Services for Agricultural?
- 3. Time scales and decisions


Global Framework for Climate Services (GFCS):

""A climate service is a decision aide derived from climate information that assists individuals and organizations in society to make improved decisions."

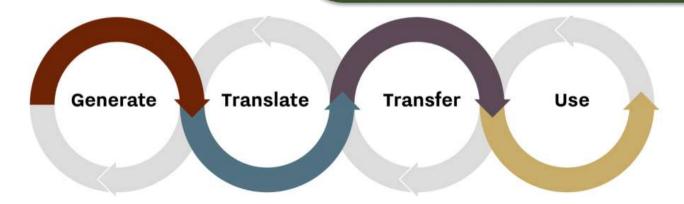
Climate Services Partnership (CSP):

"Climate service involves the production, translation, transfer, and use of climate knowledge and information in climate-informed decision-making and climate-smart policy and planning."


What are climate services? Pillars

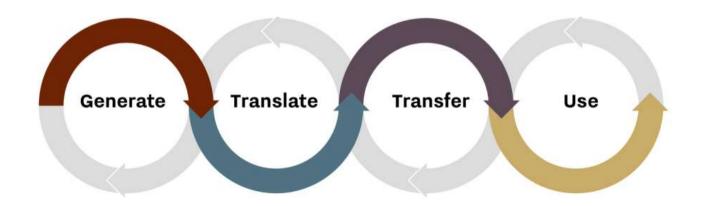
Pillars

Generation


- Production of climate data, information, knowledge
- Forecasts at a range of lead times
- Collection, management and analysis of climate observation records
- Responsibility of NMS

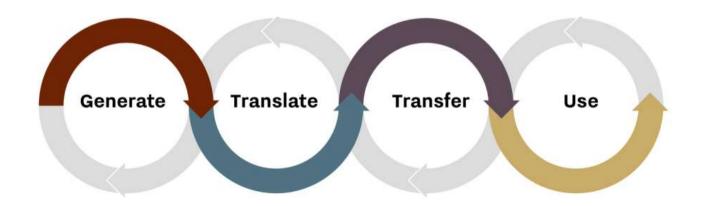
Pillars

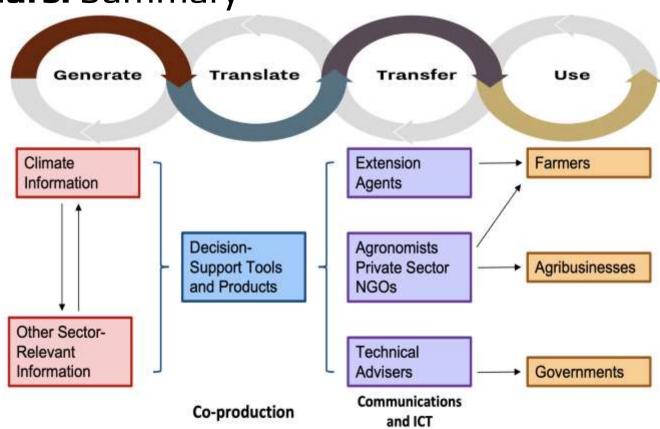
- Generation
- Translation


- Combine climate and other information to increase relevance to decisions
- Climate impacts on crops, rangelands, water resources
- Climate informed agricultural advisories, decision support tools
- Role for agricultural research, extension

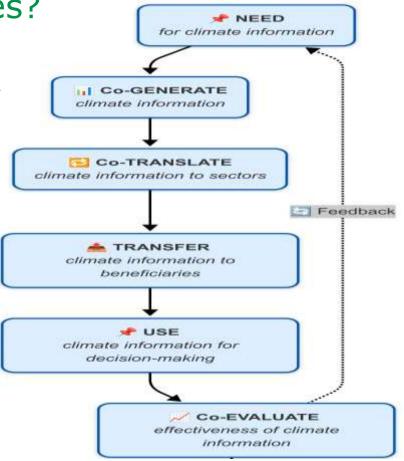
Pillars

- Generation
- Translation
- Transfer


- Communication, not dissemination
- Number, remoteness, constraints of farmers makes transfer pillar particularly important for agriculture
- Role for agricultural extension


Pillars

- Generation
- Translation
- Transfer
- Use


- Incorporation of translated and transferred climate knowledge into decision processes and policies
- May involve training, other forms of support for agricultural decision makers

Pillars: Summary

Pillars: A different look

Why CS for Agriculture?

 Agricultural production and livelihoods are linked to climate.

- Farming and pastoralism are among the most weather-dependent sources of livelihood.
- Agriculture is among the most climate-sensitive economic sectors.

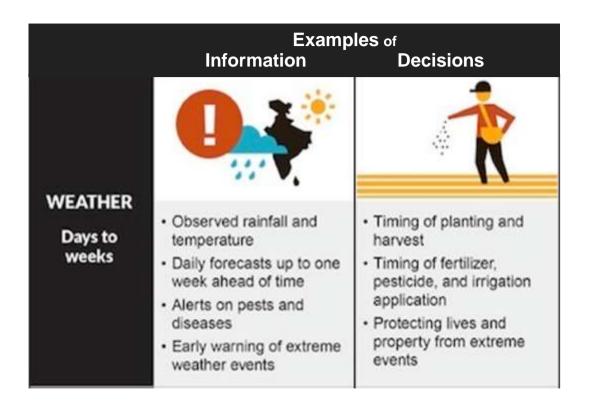
Why CS for Agriculture?

- Agricultural production and livelihoods are linked to climate.
- CS enhance resilience of agriculture.

- Managing climate risk requires understanding and anticipating climate risk.
- CS supports risk
 management decisions of
 farmers, governments,
 humanitarian organizations,
 value chain actors.

Why CS for Agriculture?

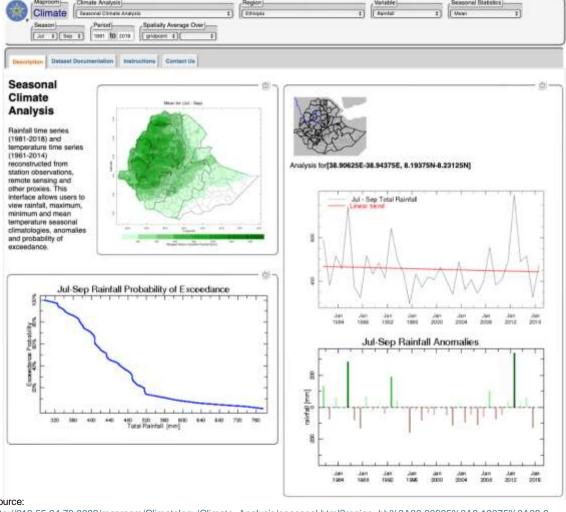
- Agricultural production and livelihoods are linked to climate.
- CS enhance resilience of agriculture.
- Part of an enabling environment for climate change adaptation.


- Most agricultural decisions are concerned with current climate conditions, not 30-50-year future projections.
- Managing the present climate can reduce vulnerability, build capacity to adapt to a harsher future climate.

Time scales

Weather

The state of the atmosphere at any given time.



Time Scales

- Weather
- **Climate**

The statistics of weather:

- long-term average
- probability distribution
- seasonal cycles
- long-term trends

Source:

http://213.55.84.78:8082/maproom/Climatology/Climate_Analysis/seasonal.html?region=bb%3A38.90625%3A8.19375%3A38.9 4375%3A8.23125%3Abb&resolution=0.0375&YearStart=1981&YearEnd=2018&seasonStart=Jul&seasonEnd=Sep&var=.precip

Weather and climate: Practical perspective

Weather information	Climate information
Used frequently, needed quickly	Used at particular strategic times
Relatively simple information	Complex, probabilistic information
Users learn to interpret and act on information through repetition	Users need training and support to interpret and act on information
Simple messages, frequency of information fit mobile phone, broadcast media channels	Timing, training and support needed fit group participatory processes

Time scales

- Weather
- Climate
- Climate variability

Natural fluctuations on time scales from year-to-year to decades

CLIMATE VARIABILITY Months to **Years**

 Probabilities for seasonal rainfall and temperature conditions

- Seasonal climate variables targeted to particular agricultural risks (dry spells, rainy season start date, etc)
- Historical variability of climate variables

Examples of Information Decisions

- Selecting crops and varieties
- Livestock stocking rates and feeding strategies
- Intensity of input use (fertilizer, pesticides)
- Labor or marketing contracts
- Intensifying and diversifying crops
- Diversifying sources of income

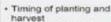
Time scales

- Weather
- Climate
- Climate variability
- Climate change

Long-term changes in climate statistics, over decades to centuries, caused largely by human action

Examples of Information **Decisions** 2000 2040 CLIMATE Projections of future · Major capital investments CHANGE rainfall and temperature (buying or expanding landholding, irrigation · Historical trends in rainfall **Decades** systems, farm equipment and temperature or longer etc) · Historical changes in Changing farming system extreme events or livelihood strategy · Deciding whether or not to farm

Time scales continuum


As time scale increases – from weather, to climate variability, to climate change:

- Information becomes more complex.
- Personal experience becomes less useful
- Decisions become more farmer- and context-specific.

 Timing of fertilizer. pesticide, and irrigation application

· Protecting lives and property from extreme events

Observed rainfall and temperature Daily forecasts up to one

- weak ahead of time · Alerts on pests and
- · Early warning of extreme weather events

- Probabilities for seasonal rainfall and temperature conditions
- Seasonal climate variables targeted to particular agricultural risks (dry spells, rainy season start date, etc)
- Historical variability of climate variables.

- · Selecting crops and varieties
- Livestock stocking rates and feeding strategies
- · Intensity of input use (fertilizer, pesticides)
- · Labor or marketing contracts
- · Intensifying and diversifying crops
- Diversifying sources of income

- Projections of future rainfall and temperature
- Historical trends in rainfall and temperature
- · Historical changes in extreme events

- Major capital investments (buying or expanding landholding, irrigation systems, farm equipment
- Changing farming system or livelihood strategy
- Deciding whether or not to farm

Time scales continuum

To be effective, climate services must therefore involve much more support for decision makers than merely disseminating information at a climate time scale.

- Observed rainfall and temperature
- Daily forecasts up to one weak shead of time
- · Alerts on pests and diseases
- · Early warning of extreme weather events
- . Timing of planting and harvest
- Timing of fertilizer. pesticide, and irrigation application
- · Protecting lives and property from extreme events

- Probabilities for seasonal rainfall and temperature conditions
- Seasonal climate variables targeted to particular agricultural risks (dry spells, rainy season start date, etc)
- Historical variability of climate variables.

- · Selecting crops and varieties
- Livestock stocking rates and feeding strategies
- · Intensity of input use (fertilizer, pesticides)
- · Labor or marketing contracts
- · Intensifying and diversifying crops
- Diversifying sources of income

- Projections of future rainfall and temperature
- Historical trends in rainfall and temperature
- · Historical changes in extreme events

- Major capital investments (buying or expanding landholding, irrigation systems, farm equipment
- · Changing farming system or livelihood strategy
- Deciding whether or not to farm

Thank you!

Email: info@aimforscale.org **Web:** www.aimforscale.org

