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Simulating & Analyzing the Atmosphere is Challenging
Multi-scale, multi-physics, nonlinear, high-dimensional & chaotic/noisy...
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d(U + u)
dt

=N + u)

U: large/slow-scale variables
The main variables of interest

u: small/fast-scale variables
Influence the spatio-temporal variability of U



Current Approach:
Low-resolution numerical solver + physics-based subgrid-scale (SGS) models

General circulation models (GCMs): Large-scale processes

dU—FUPU
— = F(U,P(U))

solved numerically at 0(10)-O(100) km resolutions

Parameterizations (closures) for SGS processes

https://admg.engin.umich.edu/

u=P(U)


https://admg.engin.umich.edu/

15t Revolution in Weather and Climate Prediction: 1950-2000
Numerical solution of PDEs governing atmosphere, ocean etc.

Physical Processes in a Model

solr  terreatria
radianon radiaton

ATMOSPHERE

CONTINENT

1910: first numerical weather
forecast failed (L. Richardson)

1928: Courant-Friedrich-Lewy
(CFL) condition

Epwarp N. LoreNz

Dept. of Meteorology, M h Institute of Technolog
(Manuscript received 2 April 1969)

Cambridge, Mass.}

ABSTRACT

Two states of the atmosphere which are observed to resemble one another are termed analogues. Either
state of a pair of analogues may be regarded as equal to the other state plus a small superposed “error.”
From the behavior of the atmosphere following each state, the growth rate of the error may be determined.

Five years of twice-daily height values of the 200-, 500, and 850-mb surfaces at a grid of 1003 points
over the Northern Hemisphere are procured. A weighted root-mean-square height difference is used as a
measure of the difference between two states, or the error. For each pair of states occurring within one
month of the same time of year, but in different years, the error is computed.

‘There are numerous mediocre analogues but no truly good ones. The smallest errors have an average
doubling time of about 8 days. Larger errors grow less rapidly. Extrapolation with the aid of a quadratic
hypothesis indicates that truly small errors would double in about 2.5 days. These rates may be compared
with a 5-day doubling time previously deduced from dynamical considerations.

The possibility that the computed growth rate is spurious, and results only from having superposed
the smaller errors on those particular states where errors grow most rapidly, is considered and rejected. The
likelihood of encountering any truly good analogues by processing all existing upper-level data appears
to be small.

Source:
NOAA

1949: first successful Discovery of
numerical weather forecast Chaos Theory

e

1960s: first
~ successful GCMs

data science:
pattern matching
1. Krick (Caltech)
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The Era of General Circulation Models

1949 1959 1969

Rising CO2
Levels Measured

VS.

first principles, PDEs
CG. Rpssby (U. Chicago)
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Atmospheric Predictability as Revealed by Naturally Occurring Analogues

The Charney Repo

1979

By H. M. VAN DEN DOOL, Climate Analysis Center, NMC/NWS/NOAA, Washington DC 20233,
us4

(Manuscript received 24 February 1993; in final form 13 September 1993)

ABSTRACT
A three-way relationship is derived between the size of a library (M years) of historical
pheric data, the di ce between an arbitrarily picked state of the atmosphere and its

nearest neighbor (or analogue), and the size of the spatial domain, as measured by the number
of spatial degrees of freedom (N). It is found that it would take a library of order 10*’ years to
find 2 observed flows that match to within current observational error over a large area such as
the Northern Hemisphere. Obviously, with only 10-100 years of data, the probability of finding

l’u natural analogous is very small, unless one is satisfied with analogy over small areas or in just

2 of 3 degrees of freedom as represented, for instance, by 2 or 3 leading empirical orthogonal
modes. We further propose the notion that analogues can be constructed by combining a
number of observed flow patterns. We have found at least one application where linearly con-
structed analogues are conclusively better at specifying US surface weather from concurrent
700 mb geopotential height than natural analogues are.

1999

UNFCCC created

D ¢

1989

|PCC formed

E’mcc

2009


http://www.easterbrook.ca/

Al-based approach: Low-resolution numerical solver +

data-driven subgrid-scale (SGS) models

General circulation models (GCMs): Large-scale processes

Q—FUDU
~ = F(U,D(V))

solved numerically at O(10)-O(100) km resolutions

Data-driven parameterizations for SGS processes

u=D(U)

https://admg.engin.umich.edu/
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2"d Revolution in 1-15 Day Weather Forecasting (2018-now)
10°x faster and more accurate than the best physics-based models

autoregressive

N

u(t + At) = NN(u(t), 9)

L = |lu(t + At) — NN(u(t), 0)|l,

initial-value solver



2"d Revolution in 1-15 Day Weather Forecasting (2018-now)
10°x faster and more accurate than the best physics-based models

autoregressive

N

u(t + At) — NN(U(t), 9) ~75M learnable parameters

(transformer + FNO)

FOURCASTNET: A GLOBAL DATA-DRIVEN HIGH-RESOLUTION

WEATHER MODEL USING ADAPTIVE FOURIER NEURAL %A
OPERATORS ‘

2022: https://arxiv.org/abs/2202.11214
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2"d Revolution in 1-15 Day Weather Forecasting (2018-now)
2019 Oxford workshop: getting close to IFS is 10 years awzc NowralGCM -
2022: FourCastNet (done) = 2023: IFS is beat! Aardvark M
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15t Revolution in Subseasonal-to-Seasonal (S2S) Forecasting?
Requires capturing the interactions of atmosphere-ocean-land and
generating calibrated ensembles

courtesy of Paul Dirmeyer (GMU/COLA)

Predictability

ocean

Source: NOAA ~f daYS ~30 days Time



Why generate a forecast with an AI model? Speed is a huge factor

e Several hours to run an NWP forecast but several minutes to
run an Al forecast - instead of redoing all of the physics for
each simulation, you can emulate patterns much faster

e Thousands of CPUs vs 1 GPU to make a forecast - energy
savings

o Large upfront cost in training, but once these models are
trained, much faster to inference

o Generally only need one GPU for inference (although
several GPUs needed for training)

e GPUs - great for parallelism -



Al Weather Model Architecture is on a Spectrum of
Data-driven Behavior

Purely Hybrid Dynamical
data driven
FourCastNet ACE2 NeuralGCM IFS
incorporates physical combines a dynamical
earth-specific IF:a)n(guWeatr : center of mass rules core with machine GFS
transformer u | = learning processes purely dynamical,
mechanisms FyXij S2S v simulating earth
GraphCaSt Dynamical core systgm with
AIFS physical laws
Gencast
conditional

diffusion



https://www.nature.com/articles/s41612-025-01090-0

Graphcast looks at earth as nodes in a mesh, examining how nodes
interact

e |Initial weather states defined on a
25 km grid - 5 surface variables,
6 atmospheric variables,
repeated at 37 pressure levels
here

e Multi-mesh grid that enables
earth-specific training across
nodes (locations) and
atmospheric levels

GraphCast

S0

source: Lam et aI022, 202



https://arxiv.org/abs/2212.12794
https://www.science.org/doi/10.1126/science.adi2336

TRAINING CECMWF

Atmospheric state: OUTPUTS

i X(),X(h)‘ AIFS model (GNN and transformer Prediciion:
) X(t+6h)

oot e M processor [N .o

AIFS (deterministic and ensemble) works as a transformer with a sliding attention window

source: ECMWEF, see recent seminar on AIFS ENS for more information on recent advances )IA WEATHER PACKAGE
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Double penalty problem and how it relates to spectral bias
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u(t + At) = NN(u(t), 9)

L = |lu(t + At) — NN(u(t), 0)|l,

Chattopadhyay, Sun & Hassanzadeh (2023 http



GenCast

Conditional diffusion models, one way to
address spectral bias isse - example GenCast

1
dae, = —§g(t)a}tdt + Vg(t)dw,

y

£

Diffusion solver steps

Noise space

Reverse process f: & — 1

O—@ =
Score function

1
dwt = —§g(t) [wt =t th logpt(a:t) dt

Image space T

—

Son et al,
2021
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source: Price et al. 2025



https://www.nature.com/articles/s41586-024-08252-9

NeuralGCM setup - includes a dynamical core - aims to tackle spectral bias challenge with
learned physics - maintain physical consistency in the subgrid scales

b
Learned physics
N N\ )
Learned ;
encoder t
( w Y
Dynamical core Learned physics : Neural
network
8 =
i E
S
3 ~
L Q
I
Dynamic Physics
tendencies tendencies i
L ODE solver J
Y
L ed : : ‘
/ earn X : Physics
Outputs o D— t:+1 : Yy

tendencies

Source: Kochkov et al. (2024) Nature



https://www.nature.com/articles/s41586-024-07744-y

AIFS ensemble tackles spectral bias with improved training metrics -
training probabilistically instead of optimizing for deterministic total error

What is continuous ranked probability
score (CRPS)?

Scoring rule that compares full
predicted probability distribution to
observed outcome, rewarding
predictions that capture both large-scale
trends and small -scale variations

Training include variance requirements -
reflecting how confident a model is
about the small- vs large- scale patterns

AlFS-ENS:
Probabilistic training of AIFS:
afCRPS,, := a fCRPS + (1 — a)CRPS

M M M

1 M-1+a
\12|”_"| OIM2(M — 1221” x|

=] k=1
M M

\IZ“’*"' zu M- 122“’_“‘

=1 k=1

AIFS ENS is optimized with a
modified version of CRPS to make
the scoring fair, accounting for
ensemble size - see intro to AIFS
ENS for more details



https://www.youtube.com/watch?v=pWxkf7cGI9k&list=PLwv2rZ5UPWUEMJ_lDBdaU-79y2wLv4Al-
https://www.youtube.com/watch?v=pWxkf7cGI9k&list=PLwv2rZ5UPWUEMJ_lDBdaU-79y2wLv4Al-

Some differences between AIFS single vs. latest ensemble version
How models are trained matters - improvements with CRPS loss

AIFS ensemble training approach

e Trains an ensemble of forecasts gets
an injection of noise

e Trained on fair continuous ranked
probability score (CRPS) based loss AIFS
— fair CRPS accounts for number of .
ensemble members used — can Single
train AIFS with 2 members only

Day 10 Forecast

Day 1 Forecast

Result: CRPS loss not possible for the

model — so the model has not lost the AIES

small scale of variability to fulfill the

training target by Day 10. Ensemble

Note, probabilistic version of NeuralGCM also trained to less blurry by day 10, more physical realism
minimize CRPS to reduce spectral bias IM A PACKAGe

AIM FOR SCALE

Source: ECMWEF, see recent seminar on AIFS ENS for more information on recent advances



https://www.youtube.com/watch?v=pWxkf7cGI9k&list=PLwv2rZ5UPWUEMJ_lDBdaU-79y2wLv4Al-
https://www.nature.com/articles/s41586-024-07744-y

Spectral bias - a thorn in AI models - NGCM big push to cut down on
spectral bias (a reason for the ‘blurriness’)

ECMWF-ENS NeuralGCM-ENS
a ERAS (0.25°) ECMWF-HRES (0.1°) Neural GCM-0.7° mean (0.2°) mean (1.4°) GraphCast (0.25°) Pangu (0.25°)
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NeuralGCM-ENS (1.4°) ECMWEF-ENS (0.2°) &

Source: Kochkov et aI (2024) Nature



https://www.nature.com/articles/s41586-024-07744-y

Practical Considerations for Using Al Models

Benchmark! Benchmark! Benchmark!
Understanding the limitations: Data and loss function!
Al is powerful but not magical: it cannot forecast things it has not
seen*!
Real-time forecasts challenges: see Adam'’s talk
Blending (multi AI models, NWP, other data): see the monsoon’s talk
Localization: see DeepMind’s talk
Downscaling: see Forecast-in-Box and G42 talks
Understanding “uncertainties” of the forecasts
Area of research across Al: see Souhaib’s talk

IM WEATHER PACKAGE

AIM FOR SCALE



Can Al Predict Events Rarer and Stronger than What is Seen

in the Training Set?
Can they extrapolate at the distributions’ tails?

Gray swans (Al+climate): Physically possible weather extremes (for a given climate) that have not
occurred in the often short training sets

Black swan event
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Can Al Predict Events Rarer and Stronger than What is Seen

in the Training Set?
Can they extrapolate at the distributions’ tails?

X(t + At) = NN(X(t), 08)
NO!
- Rare events cause “data imbalance” --> L= || X(t + At) — NN(X(1), 0)|,
they do not contribute to the loss function

- So rare absent from training set: Al cannot do out-of-distribution generalization
(extrapolation)

YES!
- Al models learn atmospheric dynamics
(Hakim & Masanam, 2024 AIES; Rackow et al, 2024 ...)

22



April 2024 Rainfall in UAE: A Gray Swan Event
Can Al weather models predict such an unprecedented event?

PDF for 12h accumulated precip in ERA5 (Dubai area)
1979-2015 Sun et al. (2025)
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http://arxiv.org/abs/2505.10241

w 103
g
5 102
#

10!

Dubai event
10° - * |
0 20 40 60 80 100

12 hour accumulated precip (mm)

2024 Dubai Flood | Forecast Hour: 6
Al model: GraphCast
N ==

—ERAS reanalysis Wbswmde“vem = e) Pred: 12haccumulated precip in Dubai area {100km X 100km mean)

5 \, 70
—e— ERAS: reanalysis
601 —m GraphCast (IC:04/11)
50 —&— Fuxi {IC:04/11)
=ame Fusi (1C:04/15)
404 —-- training data maximum (33.0 mm)
11
204
104
0] ee

0 4.;01 04/10 04/16 04,20 05/01

23


http://arxiv.org/abs/2505.10241

Controlled Experiments with FourCastNet: Rarest Extreme Events are
Removed from Training Set

a) Training of 5 versions of FourCastNet b) Testing

Alldatafrom19?9—2015l - >

25% of the training data
are randomly removed

30S-30N

FourCastMet-Rand
(5 realizations)

In 1979 — 2015, data with the
lowest 25% mslp are removed
("Cat 3-5" TCs are removed)

;’ FourCastNet-noTC »

: S
960 980 1000 1020 (5 realizations)

10l

Test on strongest TCs, "Cat 5", from 2018 - 2023
{mslp < 970 hPa, 5* percentile)



Controlled Experiments with FourCastNet
Can Al weather models predict gray swan tropical cyclones (TCs)?

a) Training of 5 versions of FourCastNet b) Testing
All data from 1979 - 2015 Why this should not work?
é - * - Rare events cause “data

imbalance”

25% of the training data - Al cannotdo

are randomly removed out-of-distribution generalization
(extrapolation)

30S-30N
FourCastNet-Rand Why this might work?
(5 realizations) - Learning dynamics vs

memorization
In 1979 — 2015, data with the
lowest 25% mslp are removed - FourCastNet might learn unseen

(S I T T | Cat-5 TCs (gray swans) from weaker

;’ FourCastNet-noTC * (Cat 1-2) TCs in the training set

: S
960 980 1000 1020 (5 realizations)

10l

Test on strongest TCs, "Cat 5", from 2018 - 2023
{mslp < 970 hPa, 5* percentile) 25




Controlled Experiments with FourCastNet
Can Al weather models predict gray swan tropical cyclones (TCs)?

a) Training of 5 versions of FourCastNet

All data from 1979 - 2015

25% of the training data
are randomly removed

30S-30N

FourCastNet-Rand
(5 realizations)

1
25%I

lu—l 5%

In 1979 — 2015, data with the
lowest 25% mslp are removed
("Cat 3-5" TCs are removed)

;} FourCastNet-noTC
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960 m;;ﬂ(hpa) 1000 1020 (5 realizations)
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Test on strongest TCs, "Cat 5", from 2018 - 2023
{mslp < 970 hPa, 5* percentile)

b) Testing

ference with 50 perturbed

initial conditions (ICs)

Example: Hurricane Lee 2023
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FourCastNet Cannot Predict Gray Swans
No out-of-distribution generalization/extrapolation at the tails

a) Training of 5 versions of FourCastNet

Al data from 1979 - 2015 l -

25% of the training data
are randomly removed

30S-30N

FourCastNet-Rand
(5 realizations)

In 1979 — 2015, data with the
lowest 25% mslp are removed
("Cat 3-5" TCs are removed)

;’ FourCastNet-noTC

10—+l ) 0 : . Ao
960 m;:ﬂ(hpa) 1000 1020 (5 realizations)

Test on strongest TCs, "Cat 5", from 2018 - 2023
{mslp < 970 hPa, 5* percentile)

b) Testing

Inference with 50 perturbed

initial conditions (ICs)

Example: Hurricane Lee 2023

1000 —_— EAAS
FaurCastMet-Full

mslp (hPa)
oo
® o
o o

w
-
=1

PR}
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24 48 72 96 1z0
tirme (hours)

100a =— ERAS
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W
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e a

"
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=3
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W
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1] 24 48 72 96 120
tirme (hours)

1000

msip (hFa)

== ERAS
FourCastMet-naTC

450
a 24 43 T2 96 1zn

time (hours)

Shading: 25-75" percentile of 5
realizations and 50 ICs

It did not work!
FourCastNet cannot learn
unseen Cat-5 TCs (gray
swans) from weaker

(Cat 1-2) TCsin the
training set
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IC: weak phase

IC: strong phase

mslp (hPa)

mslp (hPa)

FourCastNet Cannot Predict Gray Swans: Gives False Negative!

Expected to be the case with all current Al models

a) FourCastNet-Full

b) FourCastNet-Rand

¢) FourCastNet-noTC

1010

10001 )

9901
980 1
9701

960
950

ERAS
FourCastNet

ERAS
FourCastNet

ERAS

FourCastNet

d) FourCastNet-Full

e) FourCastNet-Rand

f) FourCastNet-noTC

1010

1000+
9901
9801

970

960
950

0 24

48 72 96

120 144 0 24 48 72

Time (hours)

96 120 144 0 24

96

48 72

120 144

Shading: 25-75 percentiles

20 Cat 5 TCs in testing set (2018-
2024)

50 perturbed ICs

5 realizations of each model
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Controlled Experiments with FourCastNet
Why did the Dubai forecasts work?!

a) Training of 5 versions of FourCastNet

All data from 1979 - 2015

25% of the training data
are randomly removed

30S-30N

FourCastNet-Rand
(5 realizations)

]
10- 5% 25%I
1
) i H
':E 1072 . i In 1979 — 2015, data with the
3 I | lowest 25% mslp are removed
10-3 gtmngeriTCs ! ("Cat 3-5" TCs are removed)
i 1

960 980 1000 1020

(5 realizations)

FourCastNet-noWP
FourCastNet-noNA

(5 realizations each)

Test on strongest TCs, "Cat 5", from 2018 - 2023
{mslp < 970 hPa, 5* percentile)

>

b) Testing
Example: Hurricane Lee 2023
1000 — ERAS
 9g0] = FaurCastMet-Full
z
= 980
o
g 9vt-—-—
980
930 - . . . v
a 24 43 T2 98 120
tirme (hours)
1000 —— ERAS

FouCastiet-Rand

950

Inference with 50 perturbed
initial conditions (ICs)
msip (hFaj

24 48 72 96 120
tirme (hours)

1000
980

980

msip (hFa)

L]

970 -~
— ERAS

FourCastNet-naTC

450
a

24 43 72 96 1z0
time (hours)

Shading: 25-75" percentile of 5

realizations and 50 ICs

Can the Al model translate learning in
one region to another for “dynamically
similar” events? YES!
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April 2024 Rainfall in UAE: A Regional Gray Swan Event

There are many stronger “dynamically similar” events in the training set in other regions

PDF for 12h accumulated precip in ERA5 (Dubai area) PDF for 12h accumulated precip in ERA5 (20-50N)
100] 1979-2015 10° Only dynamically
107 similar events
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