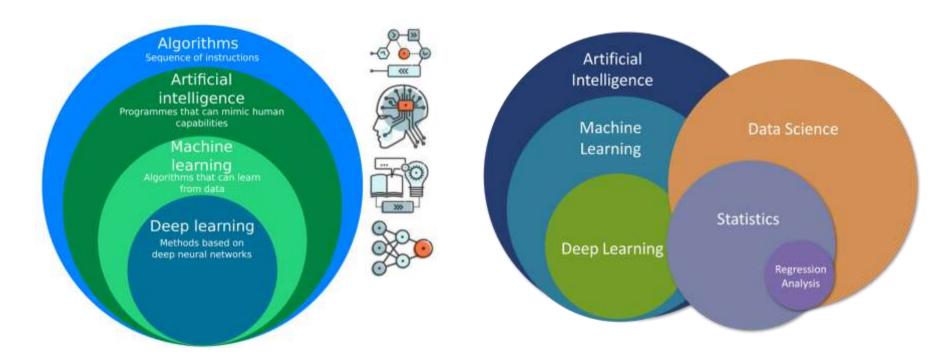
What is Artificial Intelligence?

The science of making computers do things that human beings can do

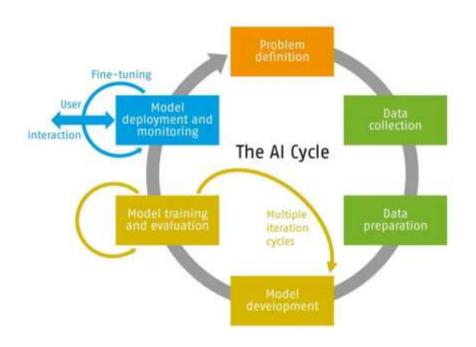
- Cambridge dictionary

Strong Al	Weak AI (Current Approach)
The machine must reason like a human (same mechanisms of operation).	The machine must arrive at the same solutions as a human (regardless of the method used).
Cognitive Approach	Pragmatic Approach

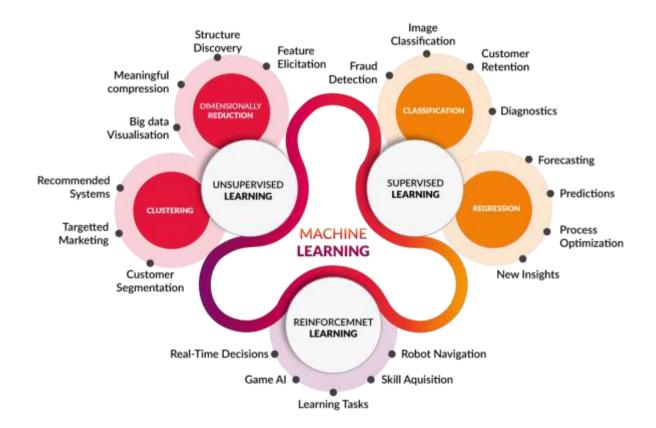
Related Fields



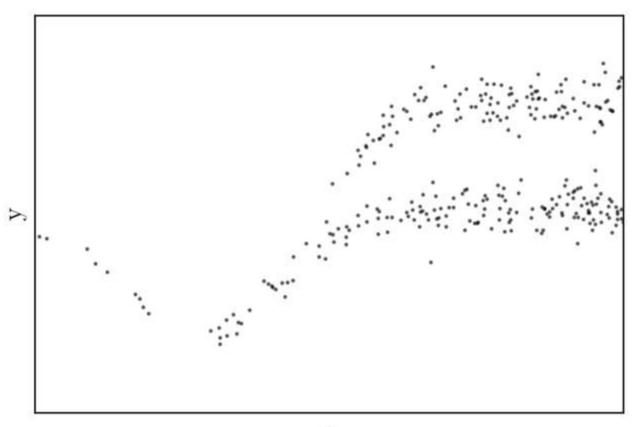
The AI (and Data Science) Cycle



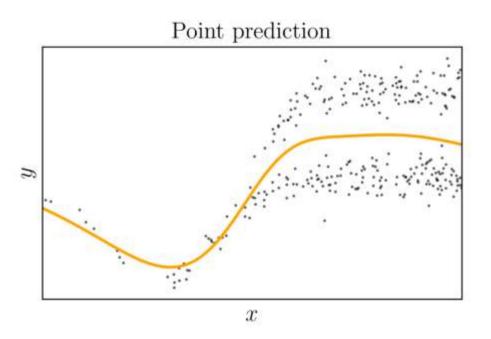
Learning Paradigms



Supervised learning - regression

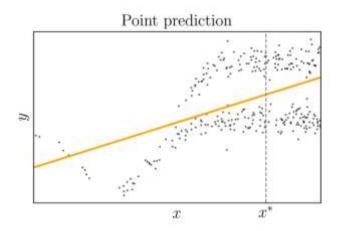


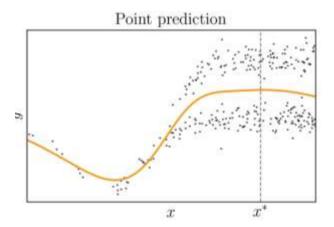
Deterministic (point) vs probabilistic predictions



• Point predictions: Single scalar, does not quantify uncertainty,

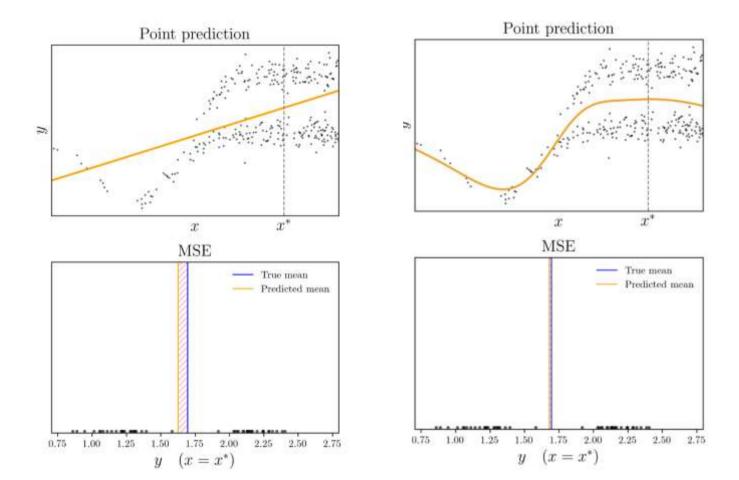
Deterministic (point) forecasts



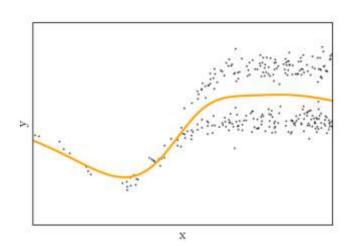


- Deterministic (point) predictions: Single scalar, does not quantify uncertainty,
- Which one is better, and why?

Deterministic (point) forecasts - MSE loss



MSE loss function



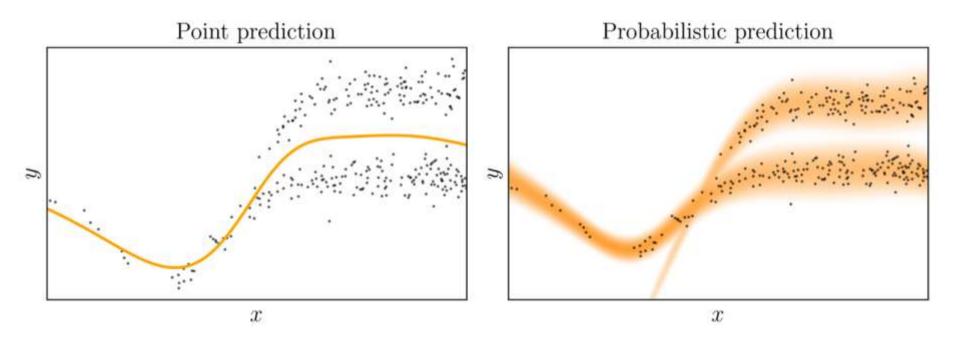
The mean squared error (MSE) compares a scalar-valued prediction $\hat{y}(x)$ with the true outcome Y given X = x:

$$MSE = \mathbb{E}\left[\left(Y - \hat{y}(X)\right)^2\right].$$

Minimizing the MSE leads to

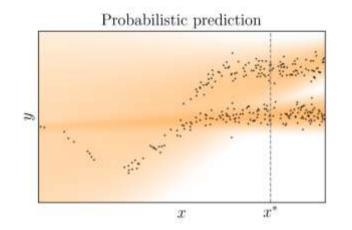
$$\hat{y}(x) \to \mathbb{E}[Y \mid X = x].$$

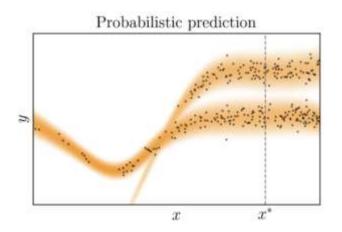
Deterministic (point) vs probabilistic forecasts



- Point predictions: Single scalar, does not quantify uncertainty,
- **Probabilistic** predictions: Probabilistic quantity, quantifies uncertainty.

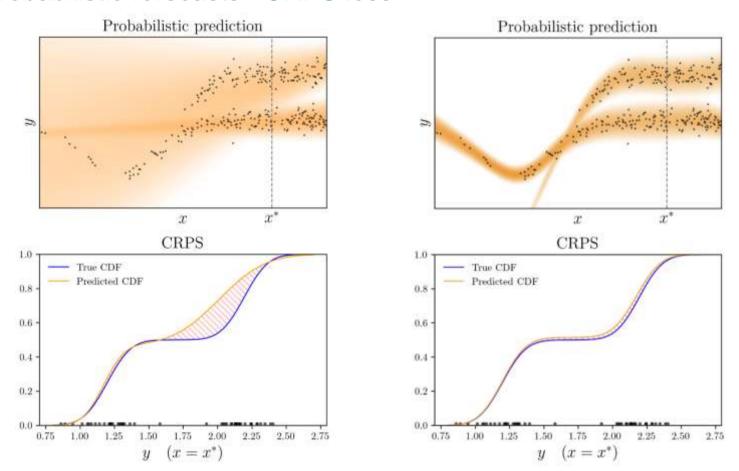
Probabilistic forecasts



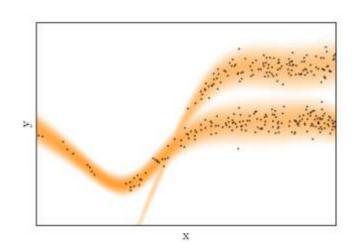


Which one is better, and why?

Probabilistic forecasts - CRPS loss



Loss functions: CRPS



The continuous ranked probability score (CRPS) compares a predicted CDF $\hat{F}(\cdot \mid x)$ with the true outcome Y given X = x:

$$\mathsf{CRPS}(\hat{F}(\cdot \mid x), Y) = \int_{-\infty}^{\infty} \left(\hat{F}(z \mid x) - \mathbf{1}\{Y \leq z\}\right)^2 dz.$$

Minimizing the CRPS leads to

$$\hat{F}(\cdot \mid x) \to \mathbb{P}(Y \le \cdot \mid X = x).$$

Loss functions: CRPS vs fCRPS vs afCRPS

The CRPS for an ensemble forecast $\{z_j\}_{j=1}^M$ is given by

CRPS
$$(\{z_j\}_{j=1}^M, y) = \frac{1}{M} \sum_{i=1}^M |z_j - y| - \frac{1}{2M^2} \sum_{i=1}^M \sum_{k=1}^M |z_j - z_k|$$
.

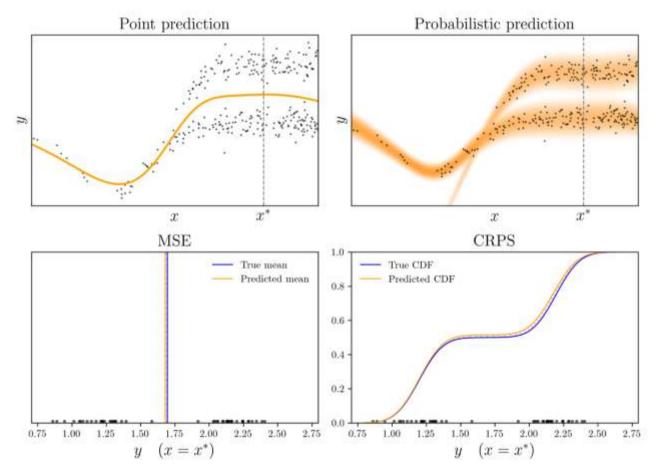
The fair CRPS (fCRPS) adjusts for ensemble size:

$$\text{fCRPS}\left(\{z_j\}_{j=1}^M,y\right) = \frac{1}{M} \sum_{j=1}^M |z_j - y| - \frac{1}{2M(M-1)} \sum_{j=1}^M \sum_{k=1}^M |z_j - z_k|.$$

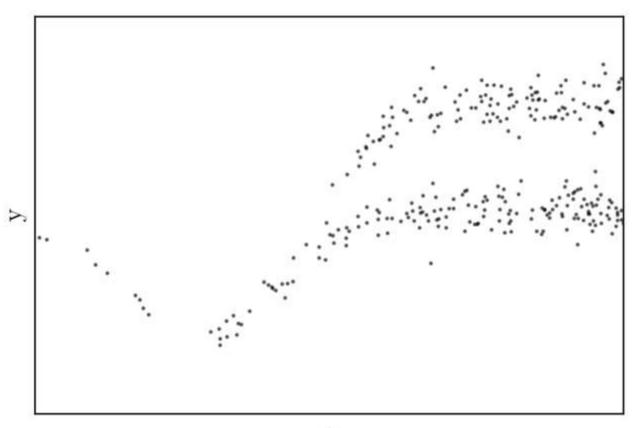
The almost fair CRPS (afCRPS) blends fCRPS and CRPS, fixing a degeneracy in case all members z_j apart from one are equal to y:

$$afCRPS_{\alpha} = \alpha fCRPS + (1 - \alpha) CRPS, \quad \alpha \in (0, 1].$$

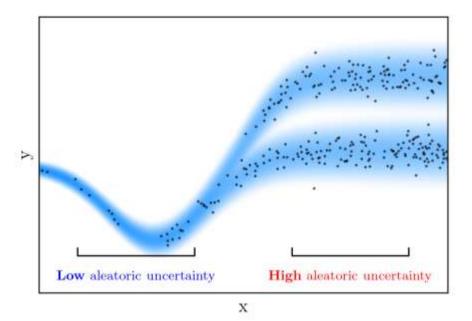
Loss functions: MSE vs CRPS



Sources of uncertainty?

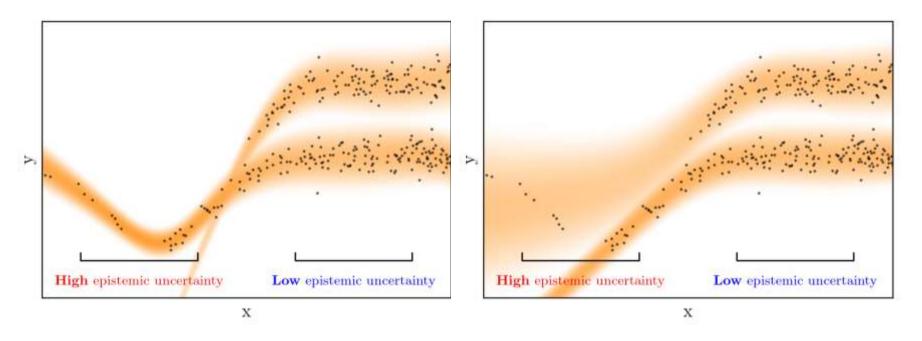


Sources of uncertainty



Aleatoric: Irreducible, inherent to the data,

Sources of uncertainty

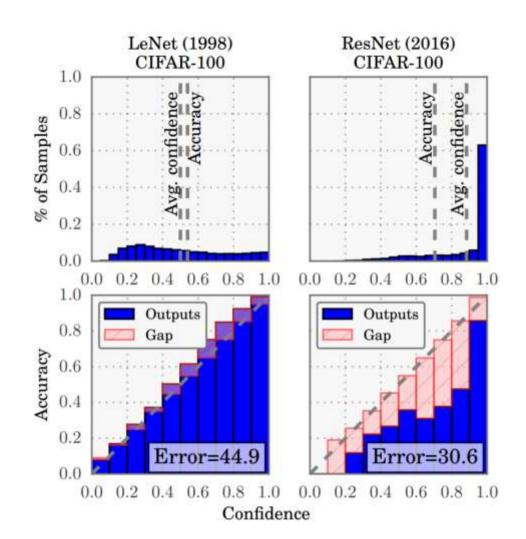


- Aleatoric: Irreducible, inherent to the data,
- **Epistemic**: All remaining uncertainty that arises in predictive modelling (lack of data, incorrect assumptions...).

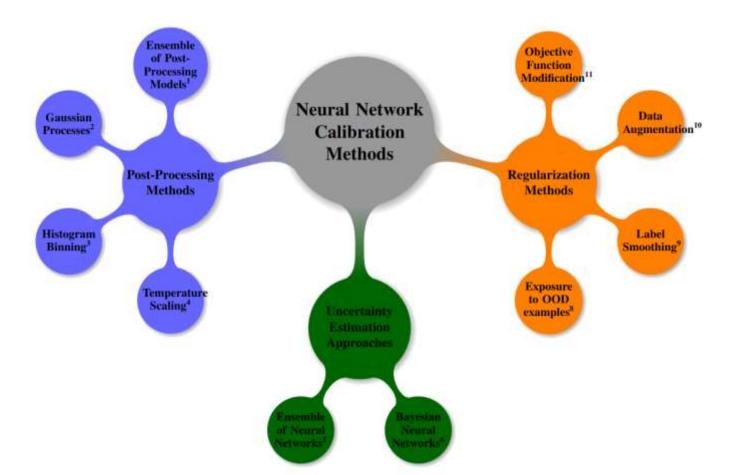
Probabilistic calibration

Neural network classifiers tend to be **overconfident**:

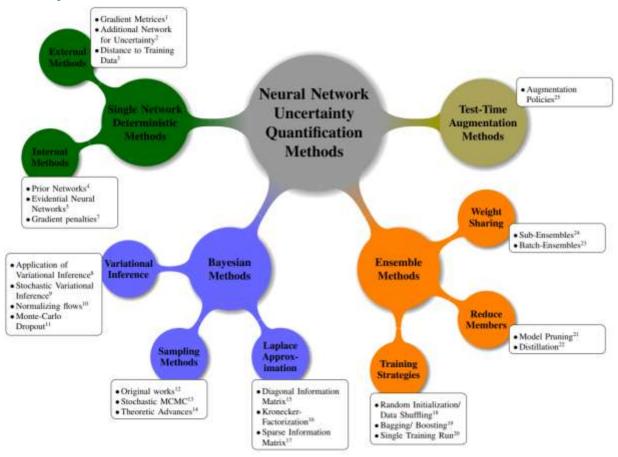
Predicted probabilities are larger than observed frequencies.



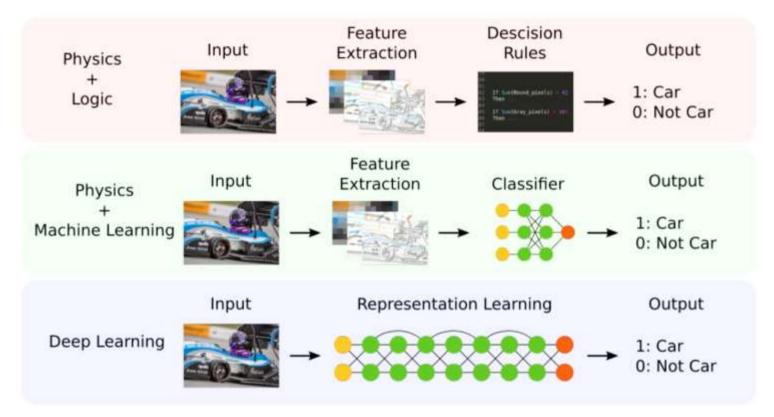
Neural Network Calibration Methods



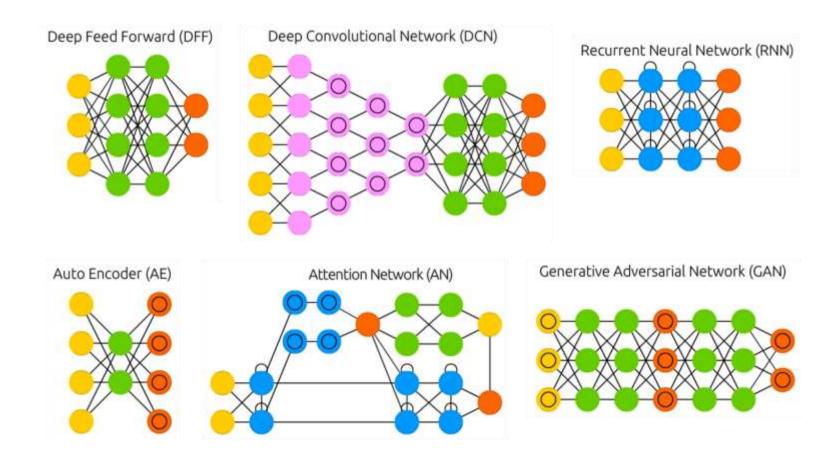
Uncertainty Quantification Methods



Deep Learning

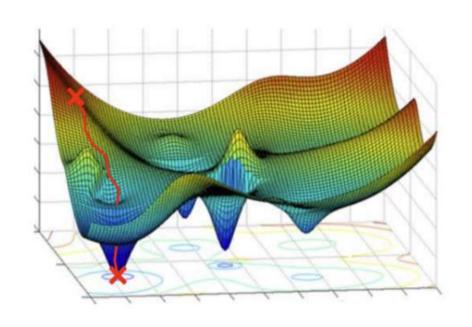


Neural Network architectures

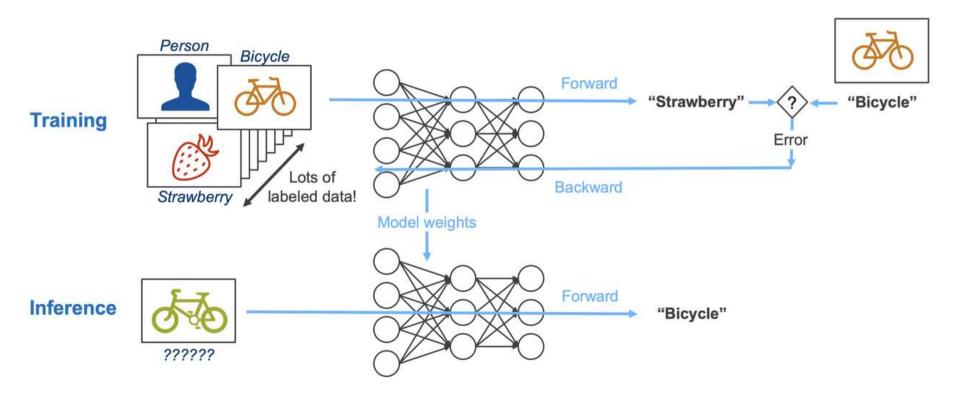


How do we train neural AI models (compute weights)?

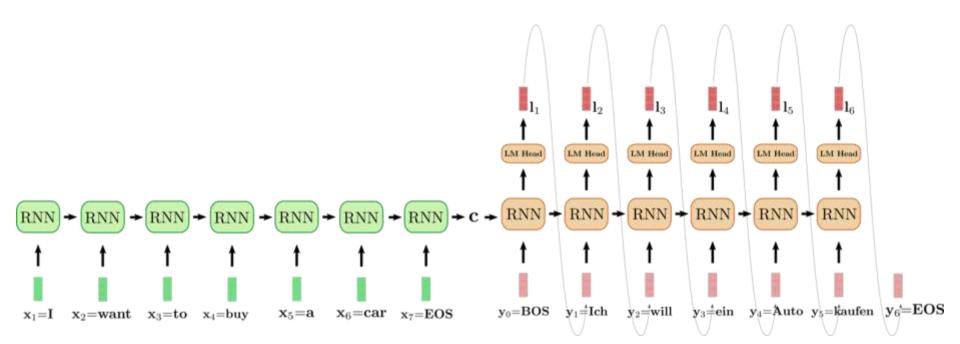
$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} CRPS(F_{\theta}(\cdot \mid x_i), y_i).$$



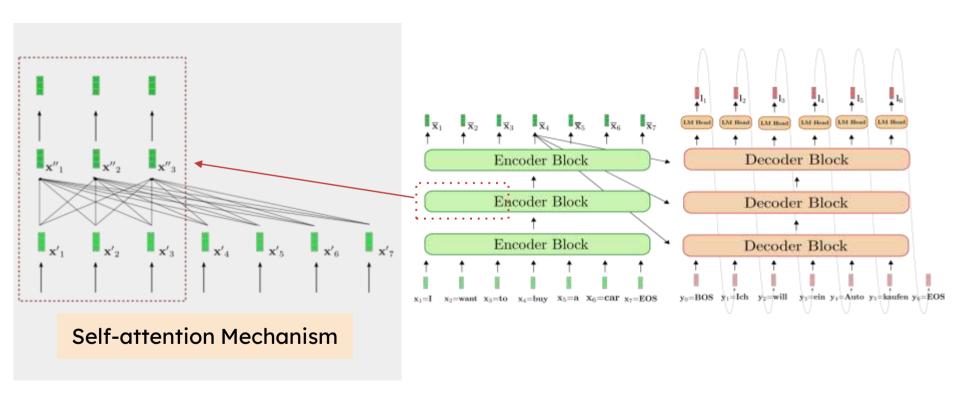
Training vs inference



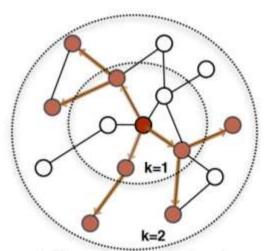
Autoregressive Encoder Decoder Models



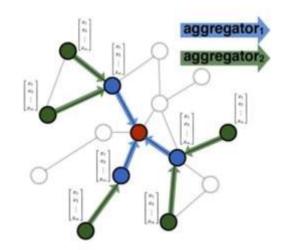
Transformers



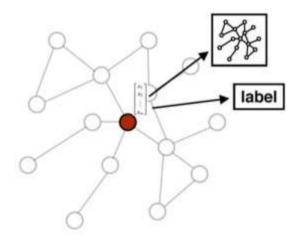
Graph Neural Networks



1. Sample neighborhood

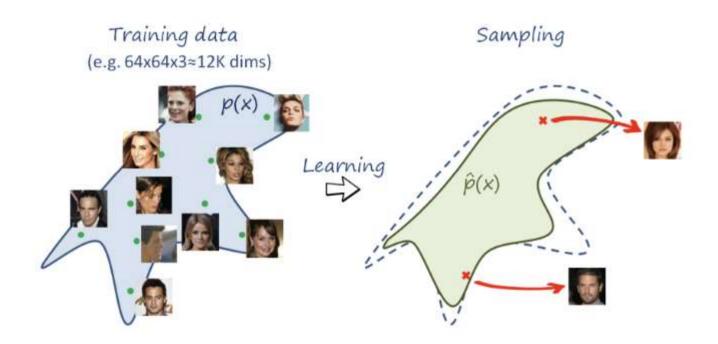


Aggregate feature information from neighbors

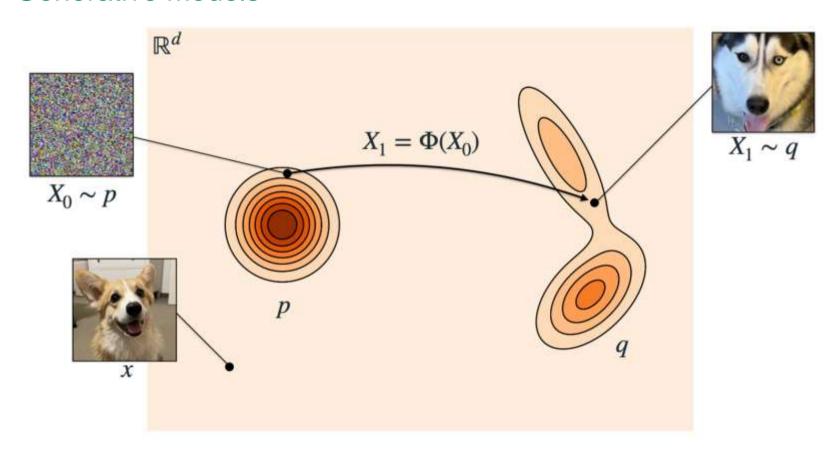


Predict graph context and label using aggregated information

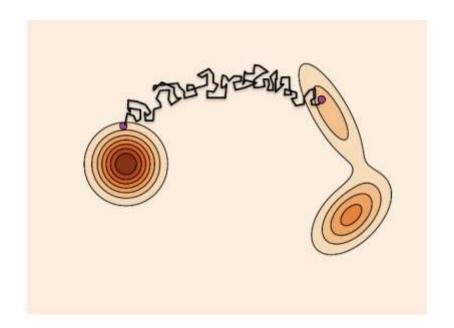
Generative Models



Generative Models



Diffusion models



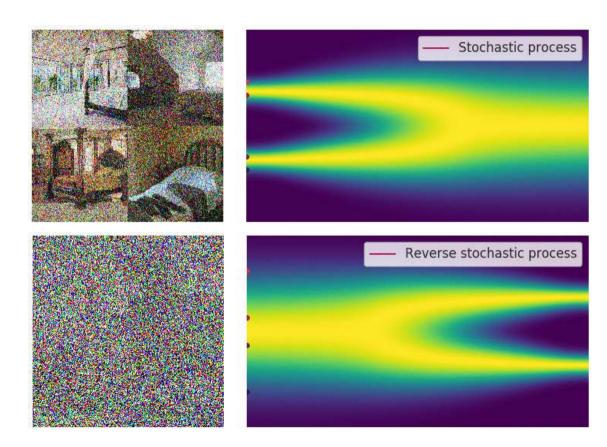
Diffusion Models

Forward Process (Fixed):

Destroy the data by gradually adding small amounts of Gaussian noise.

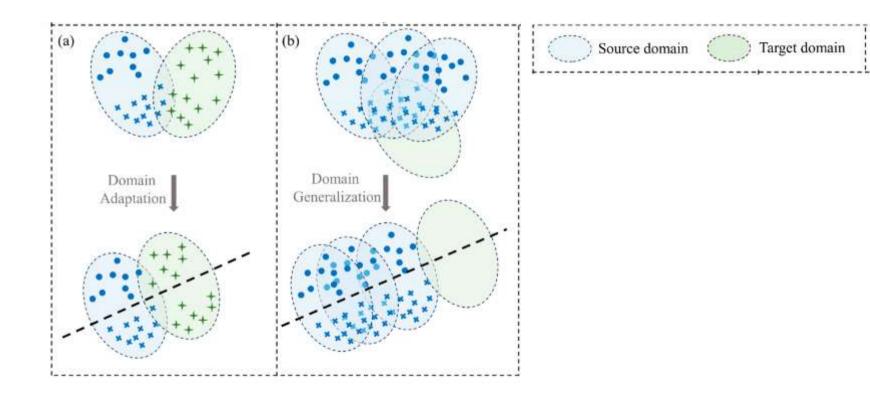
Reverse Process (Generative):

"Create" data by gradually denoising a noisy code from a stationary distribution.



Source: Generative Modeling by Estimating Gradients of the Data Distribution | Yang Song

Domain Adaptation and Generalization



Challenges

- Data Quality & Availability:
 - O Sparse or biased data; missing measurements; historical records may be inconsistent
- Generalization & Robustness:
 - o Models may overfit to past conditions; struggle with rare/extreme events (heatwaves, floods)
 - o Complexity: Multi-scale spatial & temporal processes.
- Uncertainty & Reliability:
 - O Difficult to quantify confidence in predictions; risk of overconfidence or underestimation
- Physical consistency:
 - o Predictions may not adhere to the laws of physics.
- Interpretability & Trust:
 - o "Black-box" predictions are hard to explain; decision-makers need transparency
- Computational Demands: